gsalmon commited on
Commit
953c561
·
verified ·
1 Parent(s): 14267fe

Upload PPO pendulum trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - Pendulum-v1
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: Pendulum-v1
16
+ type: Pendulum-v1
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -167.69 +/- 55.64
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **Pendulum-v1**
25
+ This is a trained model of a **PPO** agent playing **Pendulum-v1**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a0d2f6ab1c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a0d2f6ab250>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a0d2f6ab2e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a0d2f6ab370>", "_build": "<function ActorCriticPolicy._build at 0x7a0d2f6ab400>", "forward": "<function ActorCriticPolicy.forward at 0x7a0d2f6ab490>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a0d2f6ab520>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a0d2f6ab5b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7a0d2f6ab640>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a0d2f6ab6d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a0d2f6ab760>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a0d2f6ab7f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a0d2f84e900>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1715553229596802352, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAAAAAAAAAIj4fz8AVXc8LCOHvSTtfz+TgcQ8K8RgPcrvfz8BMLY8qGKyPU20fz9B0ES90MuIPcG6fT8pFAg+iPk8vpbxfz+WzKu8pC17vfzTfz+YFxa9ChYZvofzfz8w0p88m6NSPTvifz+Y4/Y8OuXEPeb/fz962ea6SEQgvqT/fz9Tnlk7cuS7PZ3+fz8MJNW7qTs0vnCSfz+tvmw9uT2OPBT/fz9Eva07fmZCOyXBfz9yWTM9EDPTPIz/fz+hDHQ7G8SaPJSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsDhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwG3JyquKXOaMAWyUS8iMAXSUR0CKTfpQDV6NdX2UKGgGR7/rMbFS88LbaAdLyGgIR0CKTfmnwXqJdX2UKGgGR7/p9/jKgZjyaAdLyGgIR0CKTfkDIRywdX2UKGgGR8BtlMnVoYelaAdLyGgIR0CKTfhRZU1idX2UKGgGR8ButSA2AG0NaAdLyGgIR0CKUM18b70ndX2UKGgGR8B4DsofCAMEaAdLyGgIR0CKUMyY5T60dX2UKGgGR8Bt8m0b961LaAdLyGgIR0CKUMvcJtzkdX2UKGgGR8BuA/JkoWpIaAdLyGgIR0CKUMrz5GjLdX2UKGgGR8Bfcp/XoTwlaAdLyGgIR0CKUMo2GZeBdX2UKGgGR8BssFsrNGExaAdLyGgIR0CKUMlFc6eYdX2UKGgGR8AEF5GBnSOSaAdLyGgIR0CKUMh7E5yVdX2UKGgGR8BfQVb3XZoPaAdLyGgIR0CKUMeI2wV1dX2UKGgGR8BeQetr9EThaAdLyGgIR0CKUMbFS88LdX2UKGgGR8BeghtYSxqxaAdLyGgIR0CKUMX7+DODdX2UKGgGR8BtJlsUIsy0aAdLyGgIR0CKUMU7jkuIdX2UKGgGR8BuZyQLeANHaAdLyGgIR0CKUMRtgrpadX2UKGgGR8Bt24llbu+iaAdLyGgIR0CKUMOp84PxdX2UKGgGR8Be+aBRQ79yaAdLyGgIR0CKUMLYwqRVdX2UKGgGR8B1WWZE2HclaAdLyGgIR0CKUMIJJGvwdX2UKGgGR8BfDslolD4QaAdLyGgIR0CKUME25xzadX2UKGgGR8B1kxPLxI8RaAdLyGgIR0CKU4495hScdX2UKGgGR8BexKUzKs+3aAdLyGgIR0CKU41YyO7ydX2UKGgGR8BwspLkCFK1aAdLyGgIR0CKU4ymhufmdX2UKGgGR8B1QRMdtEXtaAdLyGgIR0CKU4vHLidbdX2UKGgGR8BfiDtw71ZlaAdLyGgIR0CKU4sJ6Y3OdX2UKGgGR8Bfci1JDmbLaAdLyGgIR0CKU4oaUA1fdX2UKGgGR8BdxgEIPbwjaAdLyGgIR0CKU4lQdjoZdX2UKGgGR8BefJx7zCk5aAdLyGgIR0CKU4hePaL5dX2UKGgGR8ABpQ79ycTbaAdLyGgIR0CKU4elKsdUdX2UKGgGR8BuFIhW5paiaAdLyGgIR0CKU4bjtG/fdX2UKGgGR8BePu4kNWluaAdLyGgIR0CKU4Yc/+sHdX2UKGgGR8Beyo593KSxaAdLyGgIR0CKU4VO9FnadX2UKGgGR8BeROYMOPNnaAdLyGgIR0CKU4SFGoaUdX2UKGgGR8BeDN7v5P/JaAdLyGgIR0CKU4O0b961dX2UKGgGR8Bee32ys0YTaAdLyGgIR0CKU4LuQZGbdX2UKGgGR8Bu9DE3sHB2aAdLyGgIR0CKU4Ieo1k2dX2UKGgGR8Bf5qC17Y03aAdLyGgIR0CKVjlBhQWOdX2UKGgGR8BfyzbeuV5baAdLyGgIR0CKVjhqj8DTdX2UKGgGR8Bdpvrv9cbBaAdLyGgIR0CKVjfMOf/WdX2UKGgGR8BdbW96C17ZaAdLyGgIR0CKVjbpu/DcdX2UKGgGR8Buobp5eJHiaAdLyGgIR0CKVjYukDZEdX2UKGgGR8Bt9N4s3AEdaAdLyGgIR0CKVjVAAyVOdX2UKGgGR7/j/4h2W6bwaAdLyGgIR0CKVjR2r4nGdX2UKGgGR8BefPFaSs8xaAdLyGgIR0CKVjOE/SpjdX2UKGgGR8B3iSLYPGyYaAdLyGgIR0CKVjLB9Cu2dX2UKGgGR8BdRsJY1YQraAdLyGgIR0CKVjICEHt4dX2UKGgGR8BsiIixFAmiaAdLyGgIR0CKVjE5QxetdX2UKGgGR7/01PepGWleaAdLyGgIR0CKVjBrN4Z/dX2UKGgGR8BeNYyGi5/caAdLyGgIR0CKVi+hXbM5dX2UKGgGR8BfT/NiYsunaAdLyGgIR0CKVi7ZFocrdX2UKGgGR8Bc4Qte2NNraAdLyGgIR0CKVi4LkS26dX2UKGgGR8BfgR//echDaAdLyGgIR0CKVi06YE4edX2UKGgGR8B2/3yI55quaAdLyGgIR0CKWQXyiEg4dX2UKGgGR8B4tQdMj/uLaAdLyGgIR0CKWQUTtb9qdX2UKGgGR8BthxikO7QLaAdLyGgIR0CKWQRjBl+WdX2UKGgGR8BtrnmzSkTIaAdLyGgIR0CKWQN/e+EidX2UKGgGR8BefYkeIVM3aAdLyGgIR0CKWQLJjlPrdX2UKGgGR8BfMpLIxQBQaAdLyGgIR0CKWQHbAUL2dX2UKGgGR7/yKmsNlRP5aAdLyGgIR0CKWQESuhbodX2UKGgGR7/3Ujopx3mnaAdLyGgIR0CKWQAjIJZ4dX2UKGgGR8BsjpGhEjPfaAdLyGgIR0CKWP9hJAdGdX2UKGgGR8Bsu1q59Vm0aAdLyGgIR0CKWP6ab4JvdX2UKGgGR8Bu93fl6qsEaAdLyGgIR0CKWP3V09yMdX2UKGgGR8B1tXhfjS5RaAdLyGgIR0CKWP0HyEtedX2UKGgGR7/kJZOi35N5aAdLyGgIR0CKWPw+dK/VdX2UKGgGR8Bex0MCtA9naAdLyGgIR0CKWPttygf2dX2UKGgGR8BfthJ2+wkgaAdLyGgIR0CKWPqk/KQrdX2UKGgGR8Bt9ga72+PBaAdLyGgIR0CKWPnW8RL9dX2UKGgGR8BfoTASFoL5aAdLyGgIR0CKW7zBAOawdX2UKGgGR8B15NwEQoTgaAdLyGgIR0CKW7vnbItEdX2UKGgGR8BuAgUDdP+GaAdLyGgIR0CKW7su3+dcdX2UKGgGR8Bd15lSS/0vaAdLyGgIR0CKW7pdrwfAdX2UKGgGR8BeJP1ct5D7aAdLyGgIR0CKW7nL7oB8dX2UKGgGR8BdZtoFmnO0aAdLyGgIR0CKW7j94u9OdX2UKGgGR8BdQUfgaWHDaAdLyGgIR0CKW7hVENONdX2UKGgGR8B1dU9C/oJRaAdLyGgIR0CKW7eLNwBHdX2UKGgGR8BfbWXkYGdJaAdLyGgIR0CKW7buc+aCdX2UKGgGR8BeNOQ2dd3TaAdLyGgIR0CKW7ZK3/gjdX2UKGgGR8BfEw9eQdS3aAdLyGgIR0CKW7YEnssydX2UKGgGR8BuErLZBcAzaAdLyGgIR0CKW7VMEidKdX2UKGgGR8BgoXjOs1baaAdLyGgIR0CKW7SGahHtdX2UKGgGR7/k1zySV4X5aAdLyGgIR0CKW7O3UhFFdX2UKGgGR8Bel0gjhUBGaAdLyGgIR0CKW7LowEhadX2UKGgGR8B3YWx+rlvIaAdLyGgIR0CKW7IzWPLgdX2UKGgGR8Benl7Uoa1kaAdLyGgIR0CKXqcT8HfNdX2UKGgGR8Bucb2exwAEaAdLyGgIR0CKXqYx+KCQdX2UKGgGR8B1po0O3DvWaAdLyGgIR0CKXqV8kUsWdX2UKGgGR8ASaY9gWrOraAdLyGgIR0CKXqSXdCVsdX2UKGgGR8BfcZ0GNaQnaAdLyGgIR0CKXqPatcOcdX2UKGgGR8BfhihJyyUtaAdLyGgIR0CKXqLronrqdX2UKGgGR8BelYSlFc6eaAdLyGgIR0CKXqI8hcJMdX2UKGgGR8BykKmk30f6aAdLyGgIR0CKXqFX7tRfdX2UKGgGR8BeLyy2QXANaAdLyGgIR0CKXqCfYjB3dX2UKGgGR8B1LTHEMspYaAdLyGgIR0CKXp/ZM+NcdX2UKGgGR8B15p85S3spaAdLyGgIR0CKXp8R+SbIdX2UKGgGR7/sw2dd3SrpaAdLyGgIR0CKXp5FgDzRdX2UKGgGR8B2Fcyj59E1aAdLyGgIR0CKXp19v0iAdX2UKGgGR8BfWsLF4s3AaAdLyGgIR0CKXpyvLX+VdX2UKGgGR7/pRZuAI6bOaAdLyGgIR0CKXpvn8sMBdX2UKGgGR8BuGadUbT+eaAdLyGgIR0CKXpsZYPoWdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVrQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAAMGUaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AAAAQZRoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwNWy0xLiAtMS4gLTguXZSMCWhpZ2hfcmVwcpSMClsxLiAxLiA4Ll2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -8.]", "high": "[1. 1. 8.]", "low_repr": "[-1. -1. -8.]", "high_repr": "[1. 1. 8.]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWViQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAQAAAAAAAAABlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYBAAAAAAAAAAGUaBVLAYWUaBl0lFKUjAZfc2hhcGWUSwGFlIwDbG93lGgRKJYEAAAAAAAAAAAAAMCUaAtLAYWUaBl0lFKUjARoaWdolGgRKJYEAAAAAAAAAAAAAECUaAtLAYWUaBl0lFKUjAhsb3dfcmVwcpSMBC0yLjCUjAloaWdoX3JlcHKUjAMyLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True]", "bounded_above": "[ True]", "_shape": [1], "low": "[-2.]", "high": "[2.]", "low_repr": "-2.0", "high_repr": "2.0", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
pendulum-ppo.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5ed2022171db6d208d6c8836f0bc21073a21a5abcf091f87e3e954c54a707676
3
+ size 138300
pendulum-ppo/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
pendulum-ppo/data ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7a0d2f6ab1c0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a0d2f6ab250>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a0d2f6ab2e0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a0d2f6ab370>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7a0d2f6ab400>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7a0d2f6ab490>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a0d2f6ab520>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a0d2f6ab5b0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7a0d2f6ab640>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a0d2f6ab6d0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a0d2f6ab760>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a0d2f6ab7f0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7a0d2f84e900>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1715553229596802352,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVNQEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAAAAAAAAAIj4fz8AVXc8LCOHvSTtfz+TgcQ8K8RgPcrvfz8BMLY8qGKyPU20fz9B0ES90MuIPcG6fT8pFAg+iPk8vpbxfz+WzKu8pC17vfzTfz+YFxa9ChYZvofzfz8w0p88m6NSPTvifz+Y4/Y8OuXEPeb/fz962ea6SEQgvqT/fz9Tnlk7cuS7PZ3+fz8MJNW7qTs0vnCSfz+tvmw9uT2OPBT/fz9Eva07fmZCOyXBfz9yWTM9EDPTPIz/fz+hDHQ7G8SaPJSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsDhpSMAUOUdJRSlC4="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwG3JyquKXOaMAWyUS8iMAXSUR0CKTfpQDV6NdX2UKGgGR7/rMbFS88LbaAdLyGgIR0CKTfmnwXqJdX2UKGgGR7/p9/jKgZjyaAdLyGgIR0CKTfkDIRywdX2UKGgGR8BtlMnVoYelaAdLyGgIR0CKTfhRZU1idX2UKGgGR8ButSA2AG0NaAdLyGgIR0CKUM18b70ndX2UKGgGR8B4DsofCAMEaAdLyGgIR0CKUMyY5T60dX2UKGgGR8Bt8m0b961LaAdLyGgIR0CKUMvcJtzkdX2UKGgGR8BuA/JkoWpIaAdLyGgIR0CKUMrz5GjLdX2UKGgGR8Bfcp/XoTwlaAdLyGgIR0CKUMo2GZeBdX2UKGgGR8BssFsrNGExaAdLyGgIR0CKUMlFc6eYdX2UKGgGR8AEF5GBnSOSaAdLyGgIR0CKUMh7E5yVdX2UKGgGR8BfQVb3XZoPaAdLyGgIR0CKUMeI2wV1dX2UKGgGR8BeQetr9EThaAdLyGgIR0CKUMbFS88LdX2UKGgGR8BeghtYSxqxaAdLyGgIR0CKUMX7+DODdX2UKGgGR8BtJlsUIsy0aAdLyGgIR0CKUMU7jkuIdX2UKGgGR8BuZyQLeANHaAdLyGgIR0CKUMRtgrpadX2UKGgGR8Bt24llbu+iaAdLyGgIR0CKUMOp84PxdX2UKGgGR8Be+aBRQ79yaAdLyGgIR0CKUMLYwqRVdX2UKGgGR8B1WWZE2HclaAdLyGgIR0CKUMIJJGvwdX2UKGgGR8BfDslolD4QaAdLyGgIR0CKUME25xzadX2UKGgGR8B1kxPLxI8RaAdLyGgIR0CKU4495hScdX2UKGgGR8BexKUzKs+3aAdLyGgIR0CKU41YyO7ydX2UKGgGR8BwspLkCFK1aAdLyGgIR0CKU4ymhufmdX2UKGgGR8B1QRMdtEXtaAdLyGgIR0CKU4vHLidbdX2UKGgGR8BfiDtw71ZlaAdLyGgIR0CKU4sJ6Y3OdX2UKGgGR8Bfci1JDmbLaAdLyGgIR0CKU4oaUA1fdX2UKGgGR8BdxgEIPbwjaAdLyGgIR0CKU4lQdjoZdX2UKGgGR8BefJx7zCk5aAdLyGgIR0CKU4hePaL5dX2UKGgGR8ABpQ79ycTbaAdLyGgIR0CKU4elKsdUdX2UKGgGR8BuFIhW5paiaAdLyGgIR0CKU4bjtG/fdX2UKGgGR8BePu4kNWluaAdLyGgIR0CKU4Yc/+sHdX2UKGgGR8Beyo593KSxaAdLyGgIR0CKU4VO9FnadX2UKGgGR8BeROYMOPNnaAdLyGgIR0CKU4SFGoaUdX2UKGgGR8BeDN7v5P/JaAdLyGgIR0CKU4O0b961dX2UKGgGR8Bee32ys0YTaAdLyGgIR0CKU4LuQZGbdX2UKGgGR8Bu9DE3sHB2aAdLyGgIR0CKU4Ieo1k2dX2UKGgGR8Bf5qC17Y03aAdLyGgIR0CKVjlBhQWOdX2UKGgGR8BfyzbeuV5baAdLyGgIR0CKVjhqj8DTdX2UKGgGR8Bdpvrv9cbBaAdLyGgIR0CKVjfMOf/WdX2UKGgGR8BdbW96C17ZaAdLyGgIR0CKVjbpu/DcdX2UKGgGR8Buobp5eJHiaAdLyGgIR0CKVjYukDZEdX2UKGgGR8Bt9N4s3AEdaAdLyGgIR0CKVjVAAyVOdX2UKGgGR7/j/4h2W6bwaAdLyGgIR0CKVjR2r4nGdX2UKGgGR8BefPFaSs8xaAdLyGgIR0CKVjOE/SpjdX2UKGgGR8B3iSLYPGyYaAdLyGgIR0CKVjLB9Cu2dX2UKGgGR8BdRsJY1YQraAdLyGgIR0CKVjICEHt4dX2UKGgGR8BsiIixFAmiaAdLyGgIR0CKVjE5QxetdX2UKGgGR7/01PepGWleaAdLyGgIR0CKVjBrN4Z/dX2UKGgGR8BeNYyGi5/caAdLyGgIR0CKVi+hXbM5dX2UKGgGR8BfT/NiYsunaAdLyGgIR0CKVi7ZFocrdX2UKGgGR8Bc4Qte2NNraAdLyGgIR0CKVi4LkS26dX2UKGgGR8BfgR//echDaAdLyGgIR0CKVi06YE4edX2UKGgGR8B2/3yI55quaAdLyGgIR0CKWQXyiEg4dX2UKGgGR8B4tQdMj/uLaAdLyGgIR0CKWQUTtb9qdX2UKGgGR8BthxikO7QLaAdLyGgIR0CKWQRjBl+WdX2UKGgGR8BtrnmzSkTIaAdLyGgIR0CKWQN/e+EidX2UKGgGR8BefYkeIVM3aAdLyGgIR0CKWQLJjlPrdX2UKGgGR8BfMpLIxQBQaAdLyGgIR0CKWQHbAUL2dX2UKGgGR7/yKmsNlRP5aAdLyGgIR0CKWQESuhbodX2UKGgGR7/3Ujopx3mnaAdLyGgIR0CKWQAjIJZ4dX2UKGgGR8BsjpGhEjPfaAdLyGgIR0CKWP9hJAdGdX2UKGgGR8Bsu1q59Vm0aAdLyGgIR0CKWP6ab4JvdX2UKGgGR8Bu93fl6qsEaAdLyGgIR0CKWP3V09yMdX2UKGgGR8B1tXhfjS5RaAdLyGgIR0CKWP0HyEtedX2UKGgGR7/kJZOi35N5aAdLyGgIR0CKWPw+dK/VdX2UKGgGR8Bex0MCtA9naAdLyGgIR0CKWPttygf2dX2UKGgGR8BfthJ2+wkgaAdLyGgIR0CKWPqk/KQrdX2UKGgGR8Bt9ga72+PBaAdLyGgIR0CKWPnW8RL9dX2UKGgGR8BfoTASFoL5aAdLyGgIR0CKW7zBAOawdX2UKGgGR8B15NwEQoTgaAdLyGgIR0CKW7vnbItEdX2UKGgGR8BuAgUDdP+GaAdLyGgIR0CKW7su3+dcdX2UKGgGR8Bd15lSS/0vaAdLyGgIR0CKW7pdrwfAdX2UKGgGR8BeJP1ct5D7aAdLyGgIR0CKW7nL7oB8dX2UKGgGR8BdZtoFmnO0aAdLyGgIR0CKW7j94u9OdX2UKGgGR8BdQUfgaWHDaAdLyGgIR0CKW7hVENONdX2UKGgGR8B1dU9C/oJRaAdLyGgIR0CKW7eLNwBHdX2UKGgGR8BfbWXkYGdJaAdLyGgIR0CKW7buc+aCdX2UKGgGR8BeNOQ2dd3TaAdLyGgIR0CKW7ZK3/gjdX2UKGgGR8BfEw9eQdS3aAdLyGgIR0CKW7YEnssydX2UKGgGR8BuErLZBcAzaAdLyGgIR0CKW7VMEidKdX2UKGgGR8BgoXjOs1baaAdLyGgIR0CKW7SGahHtdX2UKGgGR7/k1zySV4X5aAdLyGgIR0CKW7O3UhFFdX2UKGgGR8Bel0gjhUBGaAdLyGgIR0CKW7LowEhadX2UKGgGR8B3YWx+rlvIaAdLyGgIR0CKW7IzWPLgdX2UKGgGR8Benl7Uoa1kaAdLyGgIR0CKXqcT8HfNdX2UKGgGR8Bucb2exwAEaAdLyGgIR0CKXqYx+KCQdX2UKGgGR8B1po0O3DvWaAdLyGgIR0CKXqV8kUsWdX2UKGgGR8ASaY9gWrOraAdLyGgIR0CKXqSXdCVsdX2UKGgGR8BfcZ0GNaQnaAdLyGgIR0CKXqPatcOcdX2UKGgGR8BfhihJyyUtaAdLyGgIR0CKXqLronrqdX2UKGgGR8BelYSlFc6eaAdLyGgIR0CKXqI8hcJMdX2UKGgGR8BykKmk30f6aAdLyGgIR0CKXqFX7tRfdX2UKGgGR8BeLyy2QXANaAdLyGgIR0CKXqCfYjB3dX2UKGgGR8B1LTHEMspYaAdLyGgIR0CKXp/ZM+NcdX2UKGgGR8B15p85S3spaAdLyGgIR0CKXp8R+SbIdX2UKGgGR7/sw2dd3SrpaAdLyGgIR0CKXp5FgDzRdX2UKGgGR8B2Fcyj59E1aAdLyGgIR0CKXp19v0iAdX2UKGgGR8BfWsLF4s3AaAdLyGgIR0CKXpyvLX+VdX2UKGgGR7/pRZuAI6bOaAdLyGgIR0CKXpvn8sMBdX2UKGgGR8BuGadUbT+eaAdLyGgIR0CKXpsZYPoWdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 310,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVrQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAAMGUaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AAAAQZRoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwNWy0xLiAtMS4gLTguXZSMCWhpZ2hfcmVwcpSMClsxLiAxLiA4Ll2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True]",
60
+ "bounded_above": "[ True True True]",
61
+ "_shape": [
62
+ 3
63
+ ],
64
+ "low": "[-1. -1. -8.]",
65
+ "high": "[1. 1. 8.]",
66
+ "low_repr": "[-1. -1. -8.]",
67
+ "high_repr": "[1. 1. 8.]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
72
+ ":serialized:": "gAWViQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAQAAAAAAAAABlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYBAAAAAAAAAAGUaBVLAYWUaBl0lFKUjAZfc2hhcGWUSwGFlIwDbG93lGgRKJYEAAAAAAAAAAAAAMCUaAtLAYWUaBl0lFKUjARoaWdolGgRKJYEAAAAAAAAAAAAAECUaAtLAYWUaBl0lFKUjAhsb3dfcmVwcpSMBC0yLjCUjAloaWdoX3JlcHKUjAMyLjCUjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "dtype": "float32",
74
+ "bounded_below": "[ True]",
75
+ "bounded_above": "[ True]",
76
+ "_shape": [
77
+ 1
78
+ ],
79
+ "low": "[-2.]",
80
+ "high": "[2.]",
81
+ "low_repr": "-2.0",
82
+ "high_repr": "2.0",
83
+ "_np_random": null
84
+ },
85
+ "n_envs": 16,
86
+ "n_steps": 2048,
87
+ "gamma": 0.99,
88
+ "gae_lambda": 0.95,
89
+ "ent_coef": 0.0,
90
+ "vf_coef": 0.5,
91
+ "max_grad_norm": 0.5,
92
+ "batch_size": 64,
93
+ "n_epochs": 10,
94
+ "clip_range": {
95
+ ":type:": "<class 'function'>",
96
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
97
+ },
98
+ "clip_range_vf": null,
99
+ "normalize_advantage": true,
100
+ "target_kl": null,
101
+ "lr_schedule": {
102
+ ":type:": "<class 'function'>",
103
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
104
+ }
105
+ }
pendulum-ppo/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:15abc64b8abf730c73327a50ed4401f1c57a73f8273a5bb96b151fc557ddf5e0
3
+ size 82401
pendulum-ppo/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:38c4de65904cbd730c2a3ee025c3ed41fa1fe89aa862a46e0cc7d57128ed6397
3
+ size 40751
pendulum-ppo/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
pendulum-ppo/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.2.1+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.25.2
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (135 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -167.68818681240992, "std_reward": 55.64498176823652, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-05-12T22:49:40.448438"}