ppo-LunarLander-v2 / config.json
grunwald's picture
Score 234 +/- 20
f84cfe1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d6d3d67beb0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d6d3d67bf40>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d6d3d684040>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d6d3d6840d0>", "_build": "<function ActorCriticPolicy._build at 0x7d6d3d684160>", "forward": "<function ActorCriticPolicy.forward at 0x7d6d3d6841f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d6d3d684280>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d6d3d684310>", "_predict": "<function ActorCriticPolicy._predict at 0x7d6d3d6843a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d6d3d684430>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d6d3d6844c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d6d3d684550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d6d3d6239c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1008000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1703351228260479563, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAaIRL6U19C8Lrg/u3VMHDyGGzQ+CP4DPAAAgD8AAIA/M/Mxu1/oRz/u8BS9jSK+vv/aEr1WKcq8AAAAAAAAAADA8AI+Pbdvu8MhWjzWLJ661XuhvFnLh7sAAIA/AACAPyBBVb6XVzA/+FFEPbr7vb69OY29cQCSPAAAAAAAAAAAuvVIvmFMjrwwahK7Yx9SudUHBz6nCD46AACAPwAAgD/zAY2+HA56vESZNzlxSEU3BCnkPaZDXLgAAIA/AACAP1oVQ74ERFc+Ms8oPUeCa755TgS9R7CBuQAAAAAAAAAAmpHqPftIoj01LIO8YkjDvVo6PjxlafG8AAAAAAAAAAAqL1K+DWyZP2H3vb7qINm+XZlovgajej0AAAAAAAAAANNiKD4f4sy778aRuz6rFDkjMxq9dsKvOgAAgD8AAIA/DQxFPoNgD7wyMnc66msouJbpfb3LDJC5AACAPwAAgD9zj+K9XEsnur5IVzW7SrowRrwuulgbgbQAAIA/AAAAAADYQrzCnqM/Smvive1HAb9Ykza9E0d9vQAAAAAAAAAAwAonvnNaHj/2PlK9zVayvj11rL2NI2a7AAAAAAAAAABgFRC+rDGyPmatTz4Db6K+sGGjPFddEjsAAAAAAAAAACBxPb6Ox5a86+aXu7DSCbozxQk+9lrfOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.008000000000000007, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVJgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGsHRbbDdgyMAWyUTSwBjAF0lEdAlg0GFN+LFXV9lChoBkdAayBMvh60IGgHS/hoCEdAlg07TlT3qXV9lChoBkdAa7NAoG6f8WgHTRcBaAhHQJYOgYO2AoZ1fZQoaAZHQFvH/dqL0jFoB03oA2gIR0CWD6y9EkSmdX2UKGgGR0Bws9+CsfaIaAdNFAFoCEdAlhFQQlKK53V9lChoBkdAbOrM6ij+JmgHTQ4BaAhHQJYRii35N491fZQoaAZHQG2iNOdoWYZoB00OAWgIR0CWEl5/LDAKdX2UKGgGR0BvP5gogFHKaAdNcgFoCEdAlhNZm7J4jnV9lChoBkdAcFWrP+n622gHS/FoCEdAlhN4iHIp6XV9lChoBkdAb+bVuJk5ImgHTXYBaAhHQJYU2XKKYRd1fZQoaAZHQEEYGbCrLhdoB00iAWgIR0CWFvpWmxdIdX2UKGgGR0Bg8eZ/kNnXaAdN6ANoCEdAlhgFx0dRznV9lChoBkdAbFUgvDgqE2gHTQABaAhHQJYYMxN7Bwd1fZQoaAZHQHCXBJqZc9poB01PAWgIR0CWGiCBPKuCdX2UKGgGR0BxF0CdSVGDaAdNbAFoCEdAlhsVC1JDmnV9lChoBkdAYftK3d9DyGgHTegDaAhHQJYbPJxNqQB1fZQoaAZHQG1RE+HJtBRoB00sAWgIR0CWHIImw7kodX2UKGgGR0Bw8ineizsyaAdNBAFoCEdAlh0CLMs6JnV9lChoBkdAcV8YUFjd6GgHS/1oCEdAlh5lAiV0LnV9lChoBkdAcGCx4ptrK2gHTaUBaAhHQJYfp7dBSk11fZQoaAZHQHEbHi704BFoB0vuaAhHQJYgJcs189h1fZQoaAZHQHDDTxwyZa5oB016AWgIR0CWIJvRqoIfdX2UKGgGR0BxkFyuIRAbaAdNXgFoCEdAliCmKQ7tA3V9lChoBkdAcA+xpL26CmgHS+5oCEdAliEjTF2mpHV9lChoBkdAbiD2FFlTWGgHS/JoCEdAliFpWNm16XV9lChoBkdAb7iNgjQiRmgHS+5oCEdAliPBpxm03XV9lChoBkdAcHqVI7Njb2gHTQsBaAhHQJYk/7P6bfB1fZQoaAZHQGz9wPy08eVoB0v6aAhHQJYozmdRR/F1fZQoaAZHQFpIgIQe3hJoB03oA2gIR0CWKoFpPAO8dX2UKGgGR0BvY3IEKVpsaAdL8GgIR0CWVmgBLf1pdX2UKGgGR0BwG/ypaRp2aAdNmgFoCEdAllZ8i0OVgXV9lChoBkdAbx95Jsfq5mgHS/1oCEdAllbxGpda+3V9lChoBkdAcLDayrxRVWgHTR0BaAhHQJZXKbLEDQt1fZQoaAZHQGs0fcN6PbRoB00UAWgIR0CWV1HnEETydX2UKGgGR0BjhIiosI3SaAdN6ANoCEdAllevdVNpNHV9lChoBkdAcVFxWDHwPWgHTZMBaAhHQJZYcTRIBil1fZQoaAZHQGDtV2q1gIBoB03oA2gIR0CWWc7I1cdHdX2UKGgGR0BvLhGFzuF6aAdNCQFoCEdAllr22kSElHV9lChoBkdASwh/CqIacmgHS8loCEdAllx+zhP0qnV9lChoBkdAaajHim2srGgHTVcDaAhHQJZfcSQHRkV1fZQoaAZHQG3VearmyPdoB0vwaAhHQJZguFlCkXV1fZQoaAZHQHB6DqbBoEloB0voaAhHQJZhX1uivgZ1fZQoaAZHQHENU1EVnEloB0v4aAhHQJZiZe/pMYd1fZQoaAZHQHB2vP5YYBNoB00/AWgIR0CWZNqdYnv2dX2UKGgGR0BwwXuDzyz5aAdL7WgIR0CWZj4Ia99MdX2UKGgGR0BuKvZM+NcXaAdNRQFoCEdAlmZdWIXTE3V9lChoBkdAcLSQ5WBBiWgHTU8BaAhHQJZnk5R0lqt1fZQoaAZHQHE8ZkGzKLdoB0vtaAhHQJZrW9OARTV1fZQoaAZHQHDkzUExIrhoB00LAWgIR0CWa6bvw3HadX2UKGgGR0BtFIHs1KoRaAdL/GgIR0CWbhZvDP4VdX2UKGgGR0Bu5J9srNGFaAdNZgNoCEdAlm7XRPXTVnV9lChoBkdAbwOgIyCWeGgHS/5oCEdAlnEEY8+zMXV9lChoBkdAb5jVENOM2mgHTQcBaAhHQJZzgyzolld1fZQoaAZHQHANfdVNpM9oB0vtaAhHQJZ0IAn2Iwd1fZQoaAZHQGradupCKJloB01DAWgIR0CWd2sPatcOdX2UKGgGR0BwgBdmg8KYaAdNGQFoCEdAlnvh2W6bv3V9lChoBkdAYxMEwFkhBGgHTegDaAhHQJZ8w5WBBiV1fZQoaAZHQFzc8PnSv1VoB03oA2gIR0CWfTfb9If9dX2UKGgGR0BvtXu7YkE+aAdNOgFoCEdAln23dKujh3V9lChoBkdAb1vied07sGgHTREBaAhHQJZ+WG9Htnh1fZQoaAZHQG9AJHI6r/9oB0v8aAhHQJZ/AEW69TR1fZQoaAZHQGwCXJo0ygxoB0v2aAhHQJaAiews5GV1fZQoaAZHQHBAXyVfNRpoB0v2aAhHQJaA+8lHBk91fZQoaAZHQGAe7E5yU9poB03oA2gIR0CWgXZ75VOsdX2UKGgGR0Bs7Ol9BrvcaAdL/WgIR0CWg2bnoxHodX2UKGgGR0Bf1MxTKkmAaAdN6ANoCEdAloVmT5ftyHV9lChoBkdAajqAJb+tKmgHS+5oCEdAlrHDYukDZHV9lChoBkdAHXinpB5X2mgHS8BoCEdAlrIRh+fAbnV9lChoBkdAX9OFpPAO8WgHTegDaAhHQJaykP/aQFN1fZQoaAZHQG0VKcd5prVoB0v0aAhHQJayzmzSkTJ1fZQoaAZHQG3MoWYWtU5oB0v/aAhHQJa1Us8PnSx1fZQoaAZHQGDg6unuRcNoB03oA2gIR0CWtbunMt9QdX2UKGgGR0BrAjV6NVBEaAdN5gNoCEdAlrhNdqtYCHV9lChoBkdAbt3a1TisGWgHTXwBaAhHQJa4zjHXEqF1fZQoaAZHQHFQizcAR05oB01yAWgIR0CWvFPzWf9QdX2UKGgGR0BjHtzr/sE8aAdN6ANoCEdAlryaN6w+uHV9lChoBkdAcMhbPhQ3xWgHTQQBaAhHQJa9DboKUml1fZQoaAZHQG/3/PX05ENoB00MAWgIR0CWvRiWVu76dX2UKGgGR0BwTDNX5nDjaAdNiwFoCEdAlr3K02LpA3V9lChoBkdAbJGFUQ04zmgHTVMBaAhHQJbBaXu3MIN1fZQoaAZHQG+OmNR3u/loB00pAWgIR0CWwt+0w8GLdX2UKGgGR0BrevQ8fV7QaAdNQgFoCEdAlsTC/sVtXXV9lChoBkdAbvpdyDIzWWgHTQQBaAhHQJbFdGus90R1fZQoaAZHQG3YYigTRIBoB01CAWgIR0CWyF4bS7XhdX2UKGgGR0BtSj6WPcSHaAdL9mgIR0CWymVh1DBudX2UKGgGR0Bfnh3NcGC7aAdN6ANoCEdAlssJkbxVhnV9lChoBkdAb2olrM1TBWgHTRcBaAhHQJbLV5mh/RV1fZQoaAZHQHCMEPxx1gZoB00HAWgIR0CWy9z3h4t6dX2UKGgGR0BxUNYkmhM8aAdNAgFoCEdAls+9qgyuZHV9lChoBkdAa+R6guh9LGgHTREBaAhHQJbSi7aqS5l1fZQoaAZHQHFr5V0cOsloB01kAWgIR0CW0w23azu4dX2UKGgGR0BwCsgW8AaOaAdNCQFoCEdAltR8UEgW8HV9lChoBkdAYmjS88La3GgHTegDaAhHQJbXJI/Z/Td1fZQoaAZHQHAqR9srNGFoB00/AWgIR0CW2Wdn003wdX2UKGgGR0BeYJRfnfVJaAdN6ANoCEdAltp46S1VpHV9lChoBkdAbbq8f3evZGgHS/1oCEdAltuhgAp8W3V9lChoBkdAcC+j4Hoou2gHTX0BaAhHQJbcocBEKE51fZQoaAZHQGMXBcJMQEpoB03oA2gIR0CW3admQKa5dX2UKGgGR0BxMwX2ugYhaAdL/WgIR0CW3lXNke6qdX2UKGgGR0BgE67/XGwSaAdN6ANoCEdAlt+NiYsunXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 630, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1000, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}