Upload folder using huggingface_hub
Browse files
README.md
CHANGED
@@ -5,7 +5,6 @@ datasets:
|
|
5 |
- voxceleb2
|
6 |
libraries:
|
7 |
- speechbrain
|
8 |
-
- transformers
|
9 |
tags:
|
10 |
- gender-classification
|
11 |
- speaker-characteristics
|
@@ -35,36 +34,34 @@ The model was trained on VoxCeleb2 dataset:
|
|
35 |
- Test set: 1,647 speakers (828 females, 819 males)
|
36 |
- No speaker overlap between sets
|
37 |
- Audio preprocessing:
|
38 |
-
- Converted to WAV format
|
39 |
-
-
|
40 |
-
- 16kHz sampling rate
|
41 |
-
- Applied SileroVAD for voice activity detection
|
42 |
|
43 |
## Installation
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
```
|
48 |
-
Or install individually:
|
49 |
```bash
|
50 |
-
pip install
|
51 |
```
|
52 |
|
53 |
## Usage
|
54 |
|
55 |
```python
|
56 |
-
from
|
57 |
-
from modeling_gender import GenderClassificationPipeline
|
58 |
|
59 |
# Load the pipeline
|
60 |
-
classifier =
|
61 |
-
"
|
62 |
-
model="griko/gender_cls_svm_ecapa_voxceleb",
|
63 |
-
pipeline_class=GenderClassificationPipeline
|
64 |
)
|
65 |
|
|
|
66 |
result = classifier("path/to/audio.wav")
|
67 |
print(result) # ["female"] or ["male"]
|
|
|
|
|
|
|
|
|
68 |
```
|
69 |
|
70 |
## Limitations
|
|
|
5 |
- voxceleb2
|
6 |
libraries:
|
7 |
- speechbrain
|
|
|
8 |
tags:
|
9 |
- gender-classification
|
10 |
- speaker-characteristics
|
|
|
34 |
- Test set: 1,647 speakers (828 females, 819 males)
|
35 |
- No speaker overlap between sets
|
36 |
- Audio preprocessing:
|
37 |
+
- Converted to WAV format, single channel, 16kHz sampling rate, 256 kp/s bitrate
|
38 |
+
- Applied SileroVAD for voice activity detection, taking the first voiced segment
|
|
|
|
|
39 |
|
40 |
## Installation
|
41 |
+
|
42 |
+
You can install the package directly from GitHub:
|
43 |
+
|
|
|
|
|
44 |
```bash
|
45 |
+
pip install git+https://github.com/griko/voice-gender-classification.git
|
46 |
```
|
47 |
|
48 |
## Usage
|
49 |
|
50 |
```python
|
51 |
+
from voice_gender_classification import GenderClassificationPipeline
|
|
|
52 |
|
53 |
# Load the pipeline
|
54 |
+
classifier = GenderClassificationPipeline.from_pretrained(
|
55 |
+
"griko/gender_cls_svm_ecapa_voxceleb"
|
|
|
|
|
56 |
)
|
57 |
|
58 |
+
# Single file prediction
|
59 |
result = classifier("path/to/audio.wav")
|
60 |
print(result) # ["female"] or ["male"]
|
61 |
+
|
62 |
+
# Batch prediction
|
63 |
+
results = classifier(["audio1.wav", "audio2.wav"])
|
64 |
+
print(results) # ["female", "male", "female"]
|
65 |
```
|
66 |
|
67 |
## Limitations
|