Adding model
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- perhaps_better.zip +3 -0
- perhaps_better/_stable_baselines3_version +1 -0
- perhaps_better/data +94 -0
- perhaps_better/policy.optimizer.pth +3 -0
- perhaps_better/policy.pth +3 -0
- perhaps_better/pytorch_variables.pth +3 -0
- perhaps_better/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 288.74 +/- 16.79
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3cb8c05b90>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3cb8c05c20>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3cb8c05cb0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3cb8c05d40>", "_build": "<function ActorCriticPolicy._build at 0x7f3cb8c05dd0>", "forward": "<function ActorCriticPolicy.forward at 0x7f3cb8c05e60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3cb8c05ef0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3cb8c05f80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3cb8b8c050>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3cb8b8c0e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3cb8b8c170>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f3cb8c44f00>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2864000, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652465609.0483038, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALNayz0piGq6GjydOz9GHThltjs7+2i8twAAAAAAAAAAmjF1vKlStD+TfEC/5Qd5vTYGfzynTAw+AAAAAAAAAACgwYA+zQUVP86kYb5GoTy/QWKJPio6O74AAAAAAAAAAPMM2727o4g+ju8NPgw6Hr9k1BW+OxEbPgAAAAAAAAAAMyIkPYlTkD+m62U+Ig1rv5xXOD2BPw0+AAAAAAAAAADaPp89blidP9iRdz7DUie/pEzgPfLXKT4AAAAAAAAAAM2JoDxcc026Tpu1vDabBLJRH8i6Zj37MwAAgD8AAIA/gJwLvfYESroC+p+8s6PCMDaiXrsGP70zAACAPwAAgD8AKKS8pG4zu9W/WT2ECa08QO5zvIb2kz0AAIA/AACAPzMzlb086aM/Gmovv9c1M7+hxWw7swAsvgAAAAAAAAAAuveUPix2hT/u7hY+lGvvvqTOAD9eNXI9AAAAAAAAAAAABV09SOWAulk3FTRmGBou6mQWu6hHkLMAAIA/AACAP5qdmrtU0Tc+QGVFPh4YDL9Y9jg9yoG1PQAAAAAAAAAATQsFvpZH5j59r4M+7pBUv1hm472ikjA+AAAAAAAAAAANv809FIS7P5mPjj7NPLW+ykqtPfFqFD4AAAAAAAAAADq2AD5bbLs9epvTvh1k277Bqr48SjdBvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.049727999999999994, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVwxMAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMEQKSNQ5SGlFKUjAFslGgJaAyMAmk0lImIh5RSlChLA2gQTk5OSv////9K/////0sAdJRiQwSSAAAAlIaUUpSMAXSUR0CoOLbSy+pPdX2UKGgGaAloD0MEv42YQ5SGlFKUaBVoCWgYQwTHAAAAlIaUUpRoHUdAqDj2XmeUZHV9lChoBmgJaA9DBMgBiUOUhpRSlGgVaAloGEMEowAAAJSGlFKUaB1HQKg5GeiBXjl1fZQoaAZoCWgPQwRZXpZDlIaUUpRoFWgJaBhDBLAAAACUhpRSlGgdR0CoOUX9JjDsdX2UKGgGaAloD0MENlGNQ5SGlFKUaBVoCWgYQwTBAAAAlIaUUpRoHUdAqDlbi++M63V9lChoBmgJaA9DBJnjhkOUhpRSlGgVaAloGEMEqgAAAJSGlFKUaB1HQKg5YNx2jfx1fZQoaAZoCWgPQwQGM4dDlIaUUpRoFWgJaBhDBKcAAACUhpRSlGgdR0CoOWsPz4DcdX2UKGgGaAloD0MEIImSQ5SGlFKUaBVoCWgYQwTAAAAAlIaUUpRoHUdAqDmCpDNQj3V9lChoBmgJaA9DBL+SmUOUhpRSlGgVaAloGEMErwAAAJSGlFKUaB1HQKg5nokiUxF1fZQoaAZoCWgPQwRulYhDlIaUUpRoFWgJaBhDBLUAAACUhpRSlGgdR0CoOb/CIk7fdX2UKGgGaAloD0MEDueMQ5SGlFKUaBVoCWgYQwSrAAAAlIaUUpRoHUdAqDnRrgwXZXV9lChoBmgJaA9DBP6jjkOUhpRSlGgVaAloGEMEkwAAAJSGlFKUaB1HQKg6MoBq9Gt1fZQoaAZoCWgPQwQy8IdDlIaUUpRoFWgJaBhDBI8AAACUhpRSlGgdR0CoOjWrOqvNdX2UKGgGaAloD0MExKCWQ5SGlFKUaBVoCWgYQwTLAAAAlIaUUpRoHUdAqDpDHXEqD3V9lChoBmgJaA9DBB6rnEOUhpRSlGgVaAloGEMEpwAAAJSGlFKUaB1HQKg6SJtzjm11fZQoaAZoCWgPQwR8vo5DlIaUUpRoFWgJaBhDBK8AAACUhpRSlGgdR0CoOmcrZrYXdX2UKGgGaAloD0MEsCuUQ5SGlFKUaBVoCWgYQwS7AAAAlIaUUpRoHUdAqDqthuwX7HV9lChoBmgJaA9DBFjXmEOUhpRSlGgVaAloGEMEqAAAAJSGlFKUaB1HQKg656OYIB11fZQoaAZoCWgPQwSLYKNDlIaUUpRoFWgJaBhDBMYAAACUhpRSlGgdR0CoOxarvLHNdX2UKGgGaAloD0MEwTKPQ5SGlFKUaBVoCWgYQwShAAAAlIaUUpRoHUdAqDsc30f5lHV9lChoBmgJaA9DBJrUiUOUhpRSlGgVaAloGEMErQAAAJSGlFKUaB1HQKg7J+5OJtV1fZQoaAZoCWgPQwQ8+YNDlIaUUpRoFWgJaBhDBKUAAACUhpRSlGgdR0CoOy20iQkpdX2UKGgGaAloD0ME1k2QQ5SGlFKUaBVoCWgYQwSyAAAAlIaUUpRoHUdAqDuUsMAmzHV9lChoBmgJaA9DBJx1nUOUhpRSlGgVaAloGEMEwgAAAJSGlFKUaB1HQKg7o6unuRd1fZQoaAZoCWgPQwSTb5lDlIaUUpRoFWgJaBhDBOQAAACUhpRSlGgdR0CoO+zgEU0vdX2UKGgGaAloD0MEInWXQ5SGlFKUaBVoCWgYQwS/AAAAlIaUUpRoHUdAqDv2Po3aSXV9lChoBmgJaA9DBLJ5jEOUhpRSlGgVaAloGEMExgAAAJSGlFKUaB1HQKg79mJWNm11fZQoaAZoCWgPQwTwPZFDlIaUUpRoFWgJaBhDBLcAAACUhpRSlGgdR0CoT24bKifydX2UKGgGaAloD0MEyB2NQ5SGlFKUaBVoCWgYQwSWAAAAlIaUUpRoHUdAqE98CtA9m3V9lChoBmgJaA9DBCgomkOUhpRSlGgVaAloGEMEwwAAAJSGlFKUaB1HQKhPfxy4nWt1fZQoaAZoCWgPQwQPGJxDlIaUUpRoFWgJaBhDBMEAAACUhpRSlGgdR0CoT499Dx9YdX2UKGgGaAloD0MEiTSaQ5SGlFKUaBVoCWgYQwS/AAAAlIaUUpRoHUdAqE+rMmnfmHV9lChoBmgJaA9DBFxKmUOUhpRSlGgVaAloGEME0gAAAJSGlFKUaB1HQKhPq1eBxxV1fZQoaAZoCWgPQwTiVZVDlIaUUpRoFWgJaBhDBJMAAACUhpRSlGgdR0CoT+idrftQdX2UKGgGaAloD0MEQjGbQ5SGlFKUaBVoCWgYQwTFAAAAlIaUUpRoHUdAqFAyISDh+HV9lChoBmgJaA9DBGhhnUOUhpRSlGgVaAloGEMEvgAAAJSGlFKUaB1HQKhQTGyX2M91fZQoaAZoCWgPQwSWc5FDlIaUUpRoFWgJaBhDBLwAAACUhpRSlGgdR0CoUEyVObiIdX2UKGgGaAloD0MERnOdQ5SGlFKUaBVoCWgYQwTCAAAAlIaUUpRoHUdAqFBoIOYplXV9lChoBmgJaA9DBGZSi0OUhpRSlGgVaAloGEMEoAAAAJSGlFKUaB1HQKhQeWgvlEJ1fZQoaAZoCWgPQwTmkqBDlIaUUpRoFWgJaBhDBLcAAACUhpRSlGgdR0CoUMJYcNpedX2UKGgGaAloD0MEd+uWQ5SGlFKUaBVoCWgYQwSHAAAAlIaUUpRoHUdAqFDtaEBbOnV9lChoBmgJaA9DBC4pkkOUhpRSlGgVaAloGEMEtwAAAJSGlFKUaB1HQKhRBsvZh8Z1fZQoaAZoCWgPQwRcj5ZDlIaUUpRoFWgJaBhDBLoAAACUhpRSlGgdR0CoURiPyTY/dX2UKGgGaAloD0MEV5+dQ5SGlFKUaBVoCWgYQwTBAAAAlIaUUpRoHUdAqFEsDjin53V9lChoBmgJaA9DBKFFhUOUhpRSlGgVaAloGEMEkQAAAJSGlFKUaB1HQKhROUA1ejV1fZQoaAZoCWgPQwQappJDlIaUUpRoFWgJaBhDBMMAAACUhpRSlGgdR0CoUYkp7TlUdX2UKGgGaAloD0MEFBSNQ5SGlFKUaBVoCWgYQwS1AAAAlIaUUpRoHUdAqFGgiTt9hXV9lChoBmgJaA9DBJ8slUOUhpRSlGgVaAloGEMExgAAAJSGlFKUaB1HQKhRo+yquKZ1fZQoaAZoCWgPQwSNaJ5DlIaUUpRoFWgJaBhDBMEAAACUhpRSlGgdR0CoUac45tFbdX2UKGgGaAloD0MEWAaVQ5SGlFKUaBVoCWgYQwStAAAAlIaUUpRoHUdAqFIPz19ORHV9lChoBmgJaA9DBHZDikOUhpRSlGgVaAloGEMEpQAAAJSGlFKUaB1HQKhSE0VrRBx1fZQoaAZoCWgPQwR8GJVDlIaUUpRoFWgJaBhDBM0AAACUhpRSlGgdR0CoUiDtPYWddX2UKGgGaAloD0ME0hSPQ5SGlFKUaBVoCWgYQwS2AAAAlIaUUpRoHUdAqFJALE1l5HV9lChoBmgJaA9DBGgbjUOUhpRSlGgVaAloGEMErAAAAJSGlFKUaB1HQKhSTkq+ajN1fZQoaAZoCWgPQwQEHpZDlIaUUpRoFWgJaBhDBJYAAACUhpRSlGgdR0CoUl4Chew+dX2UKGgGaAloD0MEEEeWQ5SGlFKUaBVoCWgYQwSRAAAAlIaUUpRoHUdAqFKl/c32mHV9lChoBmgJaA9DBK2JjkOUhpRSlGgVaAloGEMErAAAAJSGlFKUaB1HQKhSx6gM+eR1fZQoaAZoCWgPQwQrDJlDlIaUUpRoFWgJaBhDBKsAAACUhpRSlGgdR0CoUt9KdxyXdX2UKGgGaAloD0ME1vuPQ5SGlFKUaBVoCWgYQwSkAAAAlIaUUpRoHUdAqFLwNiH6/XV9lChoBmgJaA9DBNunkkOUhpRSlGgVaAloGEMEmgAAAJSGlFKUaB1HQKhTMLhJiAl1fZQoaAZoCWgPQwStz5hDlIaUUpRoFWgJaBhDBAQBAACUhpRSlGgdR0CoUzbDMvAXdX2UKGgGaAloD0MEyrGEQ5SGlFKUaBVoCWgYQwSfAAAAlIaUUpRoHUdAqFNVLDhtL3V9lChoBmgJaA9DBMzAl0OUhpRSlGgVaAloGEMEqwAAAJSGlFKUaB1HQKhTex46fap1fZQoaAZoCWgPQwSU3p1DlIaUUpRoFWgJaBhDBNsAAACUhpRSlGgdR0CoU5Ud7v5QdX2UKGgGaAloD0MEPCOaQ5SGlFKUaBVoCWgYQwS4AAAAlIaUUpRoHUdAqFOayprDZXV9lChoBmgJaA9DBCNlkUOUhpRSlGgVaAloGEMEmAAAAJSGlFKUaB1HQKhTtVWCEpR1fZQoaAZoCWgPQwSF5JhDlIaUUpRoFWgJaBhDBKcAAACUhpRSlGgdR0CoU9uC5EtvdX2UKGgGaAloD0MExIKRQ5SGlFKUaBVoCWgYQwSzAAAAlIaUUpRoHUdAqFRASxqwhXV9lChoBmgJaA9DBChUnkOUhpRSlGgVaAloGEMEvgAAAJSGlFKUaB1HQKhUUpR4yGl1fZQoaAZoCWgPQwT6cJ9DlIaUUpRoFWgJaBhDBMsAAACUhpRSlGgdR0CoVFYbbUPQdX2UKGgGaAloD0MEyNCdQ5SGlFKUaBVoCWgYQwSuAAAAlIaUUpRoHUdAqFSVJWeYlnV9lChoBmgJaA9DBKUZhkOUhpRSlGgVaAloGEMEpgAAAJSGlFKUaB1HQKhUtwQ176Z1fZQoaAZoCWgPQwR+7JpDlIaUUpRoFWgJaBhDBMMAAACUhpRSlGgdR0CoVPUu14PgdX2UKGgGaAloD0MEGaeAQ5SGlFKUaBVoCWgYQwSeAAAAlIaUUpRoHUdAqFT7bah6B3V9lChoBmgJaA9DBOMUnUOUhpRSlGgVaAloGEMEwQAAAJSGlFKUaB1HQKhVGREnb7F1fZQoaAZoCWgPQwT7UohDlIaUUpRoFWgJaBhDBLQAAACUhpRSlGgdR0CoVTS1E3KkdX2UKGgGaAloD0MEbnGaQ5SGlFKUaBVoCWgYQwSzAAAAlIaUUpRoHUdAqFVVnAZbZHV9lChoBmgJaA9DBO7Gh0OUhpRSlGgVaAloGEMEqAAAAJSGlFKUaB1HQKhVXa0QbuN1fZQoaAZoCWgPQwSS54pDlIaUUpRoFWgJaBhDBKEAAACUhpRSlGgdR0CoVWXAM2FWdX2UKGgGaAloD0MEOLaKQ5SGlFKUaBVoCWgYQwStAAAAlIaUUpRoHUdAqFXPKSxJNHV9lChoBmgJaA9DBAzGnkOUhpRSlGgVaAloGEMExQAAAJSGlFKUaB1HQKhVz1anrIJ1fZQoaAZoCWgPQwTWCZlDlIaUUpRoFWgJaBhDBMEAAACUhpRSlGgdR0CoVeA0sOG1dX2UKGgGaAloD0MEPseEQ5SGlFKUaBVoCWgYQwSsAAAAlIaUUpRoHUdAqFZEa2nbZnV9lChoBmgJaA9DBLYKikOUhpRSlGgVaAloGEMEswAAAJSGlFKUaB1HQKhWRJg9eQd1fZQoaAZoCWgPQwSwDo9DlIaUUpRoFWgJaBhDBK8AAACUhpRSlGgdR0CoVkqR+z+ndX2UKGgGaAloD0MEaE2GQ5SGlFKUaBVoCWgYQwSpAAAAlIaUUpRoHUdAqFabnV5KOHV9lChoBmgJaA9DBFh9e0OUhpRSlGgVaAloGEMEjgAAAJSGlFKUaB1HQKhWrNet0V91fZQoaAZoCWgPQwSwvJdDlIaUUpRoFWgJaBhDBM4AAACUhpRSlGgdR0CoVuUHY6GQdX2UKGgGaAloD0MEFlaQQ5SGlFKUaBVoCWgYQwS8AAAAlIaUUpRoHUdAqFcQdCE6DHV9lChoBmgJaA9DBLROjEOUhpRSlGgVaAloGEMErgAAAJSGlFKUaB1HQKhXKX531SR1fZQoaAZoCWgPQwTtjpVDlIaUUpRoFWgJaBhDBMQAAACUhpRSlGgdR0CoVy+HJtBOdX2UKGgGaAloD0ME2u+IQ5SGlFKUaBVoCWgYQwSvAAAAlIaUUpRoHUdAqFdgBgeA/nV9lChoBmgJaA9DBKT/jkOUhpRSlGgVaAloGEMEtAAAAJSGlFKUaB1HQKhXZhky1u11fZQoaAZoCWgPQwSqbZZDlIaUUpRoFWgJaBhDBMsAAACUhpRSlGgdR0CoV6GReTmodX2UKGgGaAloD0MEMvOMQ5SGlFKUaBVoCWgYQwSiAAAAlIaUUpRoHUdAqFe83hn8K3V9lChoBmgJaA9DBEygoUOUhpRSlGgVaAloGEMEvwAAAJSGlFKUaB1HQKhYARK6Fuh1fZQoaAZoCWgPQwS3SZhDlIaUUpRoFWgJaBhDBMMAAACUhpRSlGgdR0CoWA32VVxTdX2UKGgGaAloD0MEU4WRQ5SGlFKUaBVoCWgYQwSDAAAAlIaUUpRoHUdAqFgwjbBXS3V9lChoBmgJaA9DBC11nEOUhpRSlGgVaAloGEMEqwAAAJSGlFKUaB1HQKhYREhJRO11fZQoaAZoCWgPQwQ0PZxDlIaUUpRoFWgJaBhDBLUAAACUhpRSlGgdR0CoWFs85jpcdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 5568, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 256, "n_epochs": 32, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
perhaps_better.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dab1942d04d9ec1dcd113787faf23cc8eca98315afcfd037481c50604d90327b
|
3 |
+
size 145228
|
perhaps_better/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
perhaps_better/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f3cb8c05b90>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3cb8c05c20>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3cb8c05cb0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3cb8c05d40>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f3cb8c05dd0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f3cb8c05e60>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3cb8c05ef0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f3cb8c05f80>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3cb8b8c050>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3cb8b8c0e0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3cb8b8c170>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f3cb8c44f00>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 2864000,
|
46 |
+
"_total_timesteps": 3000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652465609.0483038,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALNayz0piGq6GjydOz9GHThltjs7+2i8twAAAAAAAAAAmjF1vKlStD+TfEC/5Qd5vTYGfzynTAw+AAAAAAAAAACgwYA+zQUVP86kYb5GoTy/QWKJPio6O74AAAAAAAAAAPMM2727o4g+ju8NPgw6Hr9k1BW+OxEbPgAAAAAAAAAAMyIkPYlTkD+m62U+Ig1rv5xXOD2BPw0+AAAAAAAAAADaPp89blidP9iRdz7DUie/pEzgPfLXKT4AAAAAAAAAAM2JoDxcc026Tpu1vDabBLJRH8i6Zj37MwAAgD8AAIA/gJwLvfYESroC+p+8s6PCMDaiXrsGP70zAACAPwAAgD8AKKS8pG4zu9W/WT2ECa08QO5zvIb2kz0AAIA/AACAPzMzlb086aM/Gmovv9c1M7+hxWw7swAsvgAAAAAAAAAAuveUPix2hT/u7hY+lGvvvqTOAD9eNXI9AAAAAAAAAAAABV09SOWAulk3FTRmGBou6mQWu6hHkLMAAIA/AACAP5qdmrtU0Tc+QGVFPh4YDL9Y9jg9yoG1PQAAAAAAAAAATQsFvpZH5j59r4M+7pBUv1hm472ikjA+AAAAAAAAAAANv809FIS7P5mPjj7NPLW+ykqtPfFqFD4AAAAAAAAAADq2AD5bbLs9epvTvh1k277Bqr48SjdBvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": 0.049727999999999994,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVwxMAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMEQKSNQ5SGlFKUjAFslGgJaAyMAmk0lImIh5RSlChLA2gQTk5OSv////9K/////0sAdJRiQwSSAAAAlIaUUpSMAXSUR0CoOLbSy+pPdX2UKGgGaAloD0MEv42YQ5SGlFKUaBVoCWgYQwTHAAAAlIaUUpRoHUdAqDj2XmeUZHV9lChoBmgJaA9DBMgBiUOUhpRSlGgVaAloGEMEowAAAJSGlFKUaB1HQKg5GeiBXjl1fZQoaAZoCWgPQwRZXpZDlIaUUpRoFWgJaBhDBLAAAACUhpRSlGgdR0CoOUX9JjDsdX2UKGgGaAloD0MENlGNQ5SGlFKUaBVoCWgYQwTBAAAAlIaUUpRoHUdAqDlbi++M63V9lChoBmgJaA9DBJnjhkOUhpRSlGgVaAloGEMEqgAAAJSGlFKUaB1HQKg5YNx2jfx1fZQoaAZoCWgPQwQGM4dDlIaUUpRoFWgJaBhDBKcAAACUhpRSlGgdR0CoOWsPz4DcdX2UKGgGaAloD0MEIImSQ5SGlFKUaBVoCWgYQwTAAAAAlIaUUpRoHUdAqDmCpDNQj3V9lChoBmgJaA9DBL+SmUOUhpRSlGgVaAloGEMErwAAAJSGlFKUaB1HQKg5nokiUxF1fZQoaAZoCWgPQwRulYhDlIaUUpRoFWgJaBhDBLUAAACUhpRSlGgdR0CoOb/CIk7fdX2UKGgGaAloD0MEDueMQ5SGlFKUaBVoCWgYQwSrAAAAlIaUUpRoHUdAqDnRrgwXZXV9lChoBmgJaA9DBP6jjkOUhpRSlGgVaAloGEMEkwAAAJSGlFKUaB1HQKg6MoBq9Gt1fZQoaAZoCWgPQwQy8IdDlIaUUpRoFWgJaBhDBI8AAACUhpRSlGgdR0CoOjWrOqvNdX2UKGgGaAloD0MExKCWQ5SGlFKUaBVoCWgYQwTLAAAAlIaUUpRoHUdAqDpDHXEqD3V9lChoBmgJaA9DBB6rnEOUhpRSlGgVaAloGEMEpwAAAJSGlFKUaB1HQKg6SJtzjm11fZQoaAZoCWgPQwR8vo5DlIaUUpRoFWgJaBhDBK8AAACUhpRSlGgdR0CoOmcrZrYXdX2UKGgGaAloD0MEsCuUQ5SGlFKUaBVoCWgYQwS7AAAAlIaUUpRoHUdAqDqthuwX7HV9lChoBmgJaA9DBFjXmEOUhpRSlGgVaAloGEMEqAAAAJSGlFKUaB1HQKg656OYIB11fZQoaAZoCWgPQwSLYKNDlIaUUpRoFWgJaBhDBMYAAACUhpRSlGgdR0CoOxarvLHNdX2UKGgGaAloD0MEwTKPQ5SGlFKUaBVoCWgYQwShAAAAlIaUUpRoHUdAqDsc30f5lHV9lChoBmgJaA9DBJrUiUOUhpRSlGgVaAloGEMErQAAAJSGlFKUaB1HQKg7J+5OJtV1fZQoaAZoCWgPQwQ8+YNDlIaUUpRoFWgJaBhDBKUAAACUhpRSlGgdR0CoOy20iQkpdX2UKGgGaAloD0ME1k2QQ5SGlFKUaBVoCWgYQwSyAAAAlIaUUpRoHUdAqDuUsMAmzHV9lChoBmgJaA9DBJx1nUOUhpRSlGgVaAloGEMEwgAAAJSGlFKUaB1HQKg7o6unuRd1fZQoaAZoCWgPQwSTb5lDlIaUUpRoFWgJaBhDBOQAAACUhpRSlGgdR0CoO+zgEU0vdX2UKGgGaAloD0MEInWXQ5SGlFKUaBVoCWgYQwS/AAAAlIaUUpRoHUdAqDv2Po3aSXV9lChoBmgJaA9DBLJ5jEOUhpRSlGgVaAloGEMExgAAAJSGlFKUaB1HQKg79mJWNm11fZQoaAZoCWgPQwTwPZFDlIaUUpRoFWgJaBhDBLcAAACUhpRSlGgdR0CoT24bKifydX2UKGgGaAloD0MEyB2NQ5SGlFKUaBVoCWgYQwSWAAAAlIaUUpRoHUdAqE98CtA9m3V9lChoBmgJaA9DBCgomkOUhpRSlGgVaAloGEMEwwAAAJSGlFKUaB1HQKhPfxy4nWt1fZQoaAZoCWgPQwQPGJxDlIaUUpRoFWgJaBhDBMEAAACUhpRSlGgdR0CoT499Dx9YdX2UKGgGaAloD0MEiTSaQ5SGlFKUaBVoCWgYQwS/AAAAlIaUUpRoHUdAqE+rMmnfmHV9lChoBmgJaA9DBFxKmUOUhpRSlGgVaAloGEME0gAAAJSGlFKUaB1HQKhPq1eBxxV1fZQoaAZoCWgPQwTiVZVDlIaUUpRoFWgJaBhDBJMAAACUhpRSlGgdR0CoT+idrftQdX2UKGgGaAloD0MEQjGbQ5SGlFKUaBVoCWgYQwTFAAAAlIaUUpRoHUdAqFAyISDh+HV9lChoBmgJaA9DBGhhnUOUhpRSlGgVaAloGEMEvgAAAJSGlFKUaB1HQKhQTGyX2M91fZQoaAZoCWgPQwSWc5FDlIaUUpRoFWgJaBhDBLwAAACUhpRSlGgdR0CoUEyVObiIdX2UKGgGaAloD0MERnOdQ5SGlFKUaBVoCWgYQwTCAAAAlIaUUpRoHUdAqFBoIOYplXV9lChoBmgJaA9DBGZSi0OUhpRSlGgVaAloGEMEoAAAAJSGlFKUaB1HQKhQeWgvlEJ1fZQoaAZoCWgPQwTmkqBDlIaUUpRoFWgJaBhDBLcAAACUhpRSlGgdR0CoUMJYcNpedX2UKGgGaAloD0MEd+uWQ5SGlFKUaBVoCWgYQwSHAAAAlIaUUpRoHUdAqFDtaEBbOnV9lChoBmgJaA9DBC4pkkOUhpRSlGgVaAloGEMEtwAAAJSGlFKUaB1HQKhRBsvZh8Z1fZQoaAZoCWgPQwRcj5ZDlIaUUpRoFWgJaBhDBLoAAACUhpRSlGgdR0CoURiPyTY/dX2UKGgGaAloD0MEV5+dQ5SGlFKUaBVoCWgYQwTBAAAAlIaUUpRoHUdAqFEsDjin53V9lChoBmgJaA9DBKFFhUOUhpRSlGgVaAloGEMEkQAAAJSGlFKUaB1HQKhROUA1ejV1fZQoaAZoCWgPQwQappJDlIaUUpRoFWgJaBhDBMMAAACUhpRSlGgdR0CoUYkp7TlUdX2UKGgGaAloD0MEFBSNQ5SGlFKUaBVoCWgYQwS1AAAAlIaUUpRoHUdAqFGgiTt9hXV9lChoBmgJaA9DBJ8slUOUhpRSlGgVaAloGEMExgAAAJSGlFKUaB1HQKhRo+yquKZ1fZQoaAZoCWgPQwSNaJ5DlIaUUpRoFWgJaBhDBMEAAACUhpRSlGgdR0CoUac45tFbdX2UKGgGaAloD0MEWAaVQ5SGlFKUaBVoCWgYQwStAAAAlIaUUpRoHUdAqFIPz19ORHV9lChoBmgJaA9DBHZDikOUhpRSlGgVaAloGEMEpQAAAJSGlFKUaB1HQKhSE0VrRBx1fZQoaAZoCWgPQwR8GJVDlIaUUpRoFWgJaBhDBM0AAACUhpRSlGgdR0CoUiDtPYWddX2UKGgGaAloD0ME0hSPQ5SGlFKUaBVoCWgYQwS2AAAAlIaUUpRoHUdAqFJALE1l5HV9lChoBmgJaA9DBGgbjUOUhpRSlGgVaAloGEMErAAAAJSGlFKUaB1HQKhSTkq+ajN1fZQoaAZoCWgPQwQEHpZDlIaUUpRoFWgJaBhDBJYAAACUhpRSlGgdR0CoUl4Chew+dX2UKGgGaAloD0MEEEeWQ5SGlFKUaBVoCWgYQwSRAAAAlIaUUpRoHUdAqFKl/c32mHV9lChoBmgJaA9DBK2JjkOUhpRSlGgVaAloGEMErAAAAJSGlFKUaB1HQKhSx6gM+eR1fZQoaAZoCWgPQwQrDJlDlIaUUpRoFWgJaBhDBKsAAACUhpRSlGgdR0CoUt9KdxyXdX2UKGgGaAloD0ME1vuPQ5SGlFKUaBVoCWgYQwSkAAAAlIaUUpRoHUdAqFLwNiH6/XV9lChoBmgJaA9DBNunkkOUhpRSlGgVaAloGEMEmgAAAJSGlFKUaB1HQKhTMLhJiAl1fZQoaAZoCWgPQwStz5hDlIaUUpRoFWgJaBhDBAQBAACUhpRSlGgdR0CoUzbDMvAXdX2UKGgGaAloD0MEyrGEQ5SGlFKUaBVoCWgYQwSfAAAAlIaUUpRoHUdAqFNVLDhtL3V9lChoBmgJaA9DBMzAl0OUhpRSlGgVaAloGEMEqwAAAJSGlFKUaB1HQKhTex46fap1fZQoaAZoCWgPQwSU3p1DlIaUUpRoFWgJaBhDBNsAAACUhpRSlGgdR0CoU5Ud7v5QdX2UKGgGaAloD0MEPCOaQ5SGlFKUaBVoCWgYQwS4AAAAlIaUUpRoHUdAqFOayprDZXV9lChoBmgJaA9DBCNlkUOUhpRSlGgVaAloGEMEmAAAAJSGlFKUaB1HQKhTtVWCEpR1fZQoaAZoCWgPQwSF5JhDlIaUUpRoFWgJaBhDBKcAAACUhpRSlGgdR0CoU9uC5EtvdX2UKGgGaAloD0MExIKRQ5SGlFKUaBVoCWgYQwSzAAAAlIaUUpRoHUdAqFRASxqwhXV9lChoBmgJaA9DBChUnkOUhpRSlGgVaAloGEMEvgAAAJSGlFKUaB1HQKhUUpR4yGl1fZQoaAZoCWgPQwT6cJ9DlIaUUpRoFWgJaBhDBMsAAACUhpRSlGgdR0CoVFYbbUPQdX2UKGgGaAloD0MEyNCdQ5SGlFKUaBVoCWgYQwSuAAAAlIaUUpRoHUdAqFSVJWeYlnV9lChoBmgJaA9DBKUZhkOUhpRSlGgVaAloGEMEpgAAAJSGlFKUaB1HQKhUtwQ176Z1fZQoaAZoCWgPQwR+7JpDlIaUUpRoFWgJaBhDBMMAAACUhpRSlGgdR0CoVPUu14PgdX2UKGgGaAloD0MEGaeAQ5SGlFKUaBVoCWgYQwSeAAAAlIaUUpRoHUdAqFT7bah6B3V9lChoBmgJaA9DBOMUnUOUhpRSlGgVaAloGEMEwQAAAJSGlFKUaB1HQKhVGREnb7F1fZQoaAZoCWgPQwT7UohDlIaUUpRoFWgJaBhDBLQAAACUhpRSlGgdR0CoVTS1E3KkdX2UKGgGaAloD0MEbnGaQ5SGlFKUaBVoCWgYQwSzAAAAlIaUUpRoHUdAqFVVnAZbZHV9lChoBmgJaA9DBO7Gh0OUhpRSlGgVaAloGEMEqAAAAJSGlFKUaB1HQKhVXa0QbuN1fZQoaAZoCWgPQwSS54pDlIaUUpRoFWgJaBhDBKEAAACUhpRSlGgdR0CoVWXAM2FWdX2UKGgGaAloD0MEOLaKQ5SGlFKUaBVoCWgYQwStAAAAlIaUUpRoHUdAqFXPKSxJNHV9lChoBmgJaA9DBAzGnkOUhpRSlGgVaAloGEMExQAAAJSGlFKUaB1HQKhVz1anrIJ1fZQoaAZoCWgPQwTWCZlDlIaUUpRoFWgJaBhDBMEAAACUhpRSlGgdR0CoVeA0sOG1dX2UKGgGaAloD0MEPseEQ5SGlFKUaBVoCWgYQwSsAAAAlIaUUpRoHUdAqFZEa2nbZnV9lChoBmgJaA9DBLYKikOUhpRSlGgVaAloGEMEswAAAJSGlFKUaB1HQKhWRJg9eQd1fZQoaAZoCWgPQwSwDo9DlIaUUpRoFWgJaBhDBK8AAACUhpRSlGgdR0CoVkqR+z+ndX2UKGgGaAloD0MEaE2GQ5SGlFKUaBVoCWgYQwSpAAAAlIaUUpRoHUdAqFabnV5KOHV9lChoBmgJaA9DBFh9e0OUhpRSlGgVaAloGEMEjgAAAJSGlFKUaB1HQKhWrNet0V91fZQoaAZoCWgPQwSwvJdDlIaUUpRoFWgJaBhDBM4AAACUhpRSlGgdR0CoVuUHY6GQdX2UKGgGaAloD0MEFlaQQ5SGlFKUaBVoCWgYQwS8AAAAlIaUUpRoHUdAqFcQdCE6DHV9lChoBmgJaA9DBLROjEOUhpRSlGgVaAloGEMErgAAAJSGlFKUaB1HQKhXKX531SR1fZQoaAZoCWgPQwTtjpVDlIaUUpRoFWgJaBhDBMQAAACUhpRSlGgdR0CoVy+HJtBOdX2UKGgGaAloD0ME2u+IQ5SGlFKUaBVoCWgYQwSvAAAAlIaUUpRoHUdAqFdgBgeA/nV9lChoBmgJaA9DBKT/jkOUhpRSlGgVaAloGEMEtAAAAJSGlFKUaB1HQKhXZhky1u11fZQoaAZoCWgPQwSqbZZDlIaUUpRoFWgJaBhDBMsAAACUhpRSlGgdR0CoV6GReTmodX2UKGgGaAloD0MEMvOMQ5SGlFKUaBVoCWgYQwSiAAAAlIaUUpRoHUdAqFe83hn8K3V9lChoBmgJaA9DBEygoUOUhpRSlGgVaAloGEMEvwAAAJSGlFKUaB1HQKhYARK6Fuh1fZQoaAZoCWgPQwS3SZhDlIaUUpRoFWgJaBhDBMMAAACUhpRSlGgdR0CoWA32VVxTdX2UKGgGaAloD0MEU4WRQ5SGlFKUaBVoCWgYQwSDAAAAlIaUUpRoHUdAqFgwjbBXS3V9lChoBmgJaA9DBC11nEOUhpRSlGgVaAloGEMEqwAAAJSGlFKUaB1HQKhYREhJRO11fZQoaAZoCWgPQwQ0PZxDlIaUUpRoFWgJaBhDBLUAAACUhpRSlGgdR0CoWFs85jpcdWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 5568,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 256,
|
86 |
+
"n_epochs": 32,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
perhaps_better/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:380aaa0baf1e1c62b577d1de4ea0c03fdd52a7efc64bf1c8cf427ef0a3605cdf
|
3 |
+
size 84893
|
perhaps_better/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1f59f617bf87bbb43d5080761abda0fa0623141ba463805d165a794bfa1356b7
|
3 |
+
size 43201
|
perhaps_better/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
perhaps_better/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:287607bf3673df46ec82e7b2fbc3b6bcd642197989584697949317b2500f445c
|
3 |
+
size 195681
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 288.7420620847774, "std_reward": 16.793620765848004, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-14T02:10:23.081875"}
|