gregorgabrovsek
commited on
Commit
•
c9a48ec
1
Parent(s):
4aad5b6
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-sa-4.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
- f1
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
model-index:
|
11 |
+
- name: SloBertAA_Top20_WithOOC_082023
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# SloBertAA_Top20_WithOOC_082023
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [EMBEDDIA/sloberta](https://huggingface.co/EMBEDDIA/sloberta) on an unknown dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 1.0247
|
23 |
+
- Accuracy: 0.8659
|
24 |
+
- F1: 0.8642
|
25 |
+
- Precision: 0.8642
|
26 |
+
- Recall: 0.8659
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 2e-05
|
46 |
+
- train_batch_size: 12
|
47 |
+
- eval_batch_size: 12
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 10
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
56 |
+
|:-------------:|:-----:|:------:|:---------------:|:--------:|:------:|:---------:|:------:|
|
57 |
+
| 0.5972 | 1.0 | 23853 | 0.5451 | 0.8293 | 0.8264 | 0.8276 | 0.8293 |
|
58 |
+
| 0.4728 | 2.0 | 47706 | 0.5189 | 0.8435 | 0.8380 | 0.8458 | 0.8435 |
|
59 |
+
| 0.3736 | 3.0 | 71559 | 0.5216 | 0.8512 | 0.8499 | 0.8507 | 0.8512 |
|
60 |
+
| 0.2785 | 4.0 | 95412 | 0.6074 | 0.8526 | 0.8500 | 0.8528 | 0.8526 |
|
61 |
+
| 0.2002 | 5.0 | 119265 | 0.6906 | 0.8561 | 0.8534 | 0.8552 | 0.8561 |
|
62 |
+
| 0.1719 | 6.0 | 143118 | 0.7822 | 0.8600 | 0.8580 | 0.8588 | 0.8600 |
|
63 |
+
| 0.1337 | 7.0 | 166971 | 0.8742 | 0.8623 | 0.8607 | 0.8612 | 0.8623 |
|
64 |
+
| 0.0826 | 8.0 | 190824 | 0.9613 | 0.8627 | 0.8602 | 0.8605 | 0.8627 |
|
65 |
+
| 0.0603 | 9.0 | 214677 | 1.0092 | 0.8632 | 0.8617 | 0.8620 | 0.8632 |
|
66 |
+
| 0.0359 | 10.0 | 238530 | 1.0247 | 0.8659 | 0.8642 | 0.8642 | 0.8659 |
|
67 |
+
|
68 |
+
|
69 |
+
### Framework versions
|
70 |
+
|
71 |
+
- Transformers 4.26.1
|
72 |
+
- Pytorch 1.8.0
|
73 |
+
- Datasets 2.10.1
|
74 |
+
- Tokenizers 0.13.2
|