gregorgabrovsek commited on
Commit
c9a48ec
1 Parent(s): 4aad5b6

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +74 -0
README.md ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-sa-4.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ - f1
8
+ - precision
9
+ - recall
10
+ model-index:
11
+ - name: SloBertAA_Top20_WithOOC_082023
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # SloBertAA_Top20_WithOOC_082023
19
+
20
+ This model is a fine-tuned version of [EMBEDDIA/sloberta](https://huggingface.co/EMBEDDIA/sloberta) on an unknown dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 1.0247
23
+ - Accuracy: 0.8659
24
+ - F1: 0.8642
25
+ - Precision: 0.8642
26
+ - Recall: 0.8659
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 2e-05
46
+ - train_batch_size: 12
47
+ - eval_batch_size: 12
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 10
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
56
+ |:-------------:|:-----:|:------:|:---------------:|:--------:|:------:|:---------:|:------:|
57
+ | 0.5972 | 1.0 | 23853 | 0.5451 | 0.8293 | 0.8264 | 0.8276 | 0.8293 |
58
+ | 0.4728 | 2.0 | 47706 | 0.5189 | 0.8435 | 0.8380 | 0.8458 | 0.8435 |
59
+ | 0.3736 | 3.0 | 71559 | 0.5216 | 0.8512 | 0.8499 | 0.8507 | 0.8512 |
60
+ | 0.2785 | 4.0 | 95412 | 0.6074 | 0.8526 | 0.8500 | 0.8528 | 0.8526 |
61
+ | 0.2002 | 5.0 | 119265 | 0.6906 | 0.8561 | 0.8534 | 0.8552 | 0.8561 |
62
+ | 0.1719 | 6.0 | 143118 | 0.7822 | 0.8600 | 0.8580 | 0.8588 | 0.8600 |
63
+ | 0.1337 | 7.0 | 166971 | 0.8742 | 0.8623 | 0.8607 | 0.8612 | 0.8623 |
64
+ | 0.0826 | 8.0 | 190824 | 0.9613 | 0.8627 | 0.8602 | 0.8605 | 0.8627 |
65
+ | 0.0603 | 9.0 | 214677 | 1.0092 | 0.8632 | 0.8617 | 0.8620 | 0.8632 |
66
+ | 0.0359 | 10.0 | 238530 | 1.0247 | 0.8659 | 0.8642 | 0.8642 | 0.8659 |
67
+
68
+
69
+ ### Framework versions
70
+
71
+ - Transformers 4.26.1
72
+ - Pytorch 1.8.0
73
+ - Datasets 2.10.1
74
+ - Tokenizers 0.13.2