gregorgabrovsek
commited on
Commit
•
ff8669c
1
Parent(s):
702a645
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
- f1
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
model-index:
|
11 |
+
- name: BERT_AA_IMDB_Top25_WithoutOOC_082023_MultilingualBertBase
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# BERT_AA_IMDB_Top25_WithoutOOC_082023_MultilingualBertBase
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [bert-base-multilingual-uncased](https://huggingface.co/bert-base-multilingual-uncased) on the None dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.8096
|
23 |
+
- Accuracy: 0.8897
|
24 |
+
- F1: 0.8900
|
25 |
+
- Precision: 0.8921
|
26 |
+
- Recall: 0.8897
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 2e-05
|
46 |
+
- train_batch_size: 12
|
47 |
+
- eval_batch_size: 12
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 10
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
56 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|
|
57 |
+
| 0.6413 | 1.0 | 1546 | 0.5677 | 0.8439 | 0.8463 | 0.8603 | 0.8439 |
|
58 |
+
| 0.393 | 2.0 | 3092 | 0.5086 | 0.8646 | 0.8646 | 0.8744 | 0.8646 |
|
59 |
+
| 0.2405 | 3.0 | 4638 | 0.5119 | 0.8766 | 0.8761 | 0.8803 | 0.8766 |
|
60 |
+
| 0.1519 | 4.0 | 6184 | 0.6243 | 0.8760 | 0.8755 | 0.8813 | 0.8760 |
|
61 |
+
| 0.0843 | 5.0 | 7730 | 0.6824 | 0.8805 | 0.8816 | 0.8859 | 0.8805 |
|
62 |
+
| 0.034 | 6.0 | 9276 | 0.7602 | 0.8839 | 0.8837 | 0.8864 | 0.8839 |
|
63 |
+
| 0.0281 | 7.0 | 10822 | 0.7643 | 0.8866 | 0.8871 | 0.8896 | 0.8866 |
|
64 |
+
| 0.0134 | 8.0 | 12368 | 0.8116 | 0.8863 | 0.8856 | 0.8871 | 0.8863 |
|
65 |
+
| 0.0117 | 9.0 | 13914 | 0.8050 | 0.8883 | 0.8883 | 0.8900 | 0.8883 |
|
66 |
+
| 0.0031 | 10.0 | 15460 | 0.8096 | 0.8897 | 0.8900 | 0.8921 | 0.8897 |
|
67 |
+
|
68 |
+
|
69 |
+
### Framework versions
|
70 |
+
|
71 |
+
- Transformers 4.26.1
|
72 |
+
- Pytorch 1.8.0
|
73 |
+
- Datasets 2.10.1
|
74 |
+
- Tokenizers 0.13.2
|