update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- common_voice_8_0
|
7 |
+
metrics:
|
8 |
+
- wer
|
9 |
+
model-index:
|
10 |
+
- name: wav2vec2-large-xls-r-2b-frisian-cv-8
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Automatic Speech Recognition
|
14 |
+
type: automatic-speech-recognition
|
15 |
+
dataset:
|
16 |
+
name: common_voice_8_0
|
17 |
+
type: common_voice_8_0
|
18 |
+
config: fy-NL
|
19 |
+
split: validation
|
20 |
+
args: fy-NL
|
21 |
+
metrics:
|
22 |
+
- name: Wer
|
23 |
+
type: wer
|
24 |
+
value: 0.040494215112126836
|
25 |
+
---
|
26 |
+
|
27 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
28 |
+
should probably proofread and complete it, then remove this comment. -->
|
29 |
+
|
30 |
+
# wav2vec2-large-xls-r-2b-frisian-cv-8
|
31 |
+
|
32 |
+
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-2b](https://huggingface.co/facebook/wav2vec2-xls-r-2b) on the common_voice_8_0 dataset.
|
33 |
+
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.0465
|
35 |
+
- Wer: 0.0405
|
36 |
+
|
37 |
+
## Model description
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Intended uses & limitations
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Training and evaluation data
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training procedure
|
50 |
+
|
51 |
+
### Training hyperparameters
|
52 |
+
|
53 |
+
The following hyperparameters were used during training:
|
54 |
+
- learning_rate: 3e-05
|
55 |
+
- train_batch_size: 16
|
56 |
+
- eval_batch_size: 8
|
57 |
+
- seed: 42
|
58 |
+
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
|
59 |
+
- lr_scheduler_type: linear
|
60 |
+
- lr_scheduler_warmup_ratio: 0.1
|
61 |
+
- num_epochs: 20
|
62 |
+
- mixed_precision_training: Native AMP
|
63 |
+
|
64 |
+
### Training results
|
65 |
+
|
66 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
67 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|
|
68 |
+
| 6.3316 | 0.21 | 400 | 2.9773 | 1.0 |
|
69 |
+
| 2.7465 | 0.43 | 800 | 1.2564 | 0.9352 |
|
70 |
+
| 1.4576 | 0.64 | 1200 | 0.6275 | 0.5809 |
|
71 |
+
| 1.2245 | 0.86 | 1600 | 0.4438 | 0.4244 |
|
72 |
+
| 0.9928 | 1.07 | 2000 | 0.3058 | 0.3247 |
|
73 |
+
| 0.8768 | 1.29 | 2400 | 0.2656 | 0.2618 |
|
74 |
+
| 0.8686 | 1.5 | 2800 | 0.2155 | 0.2289 |
|
75 |
+
| 0.8325 | 1.72 | 3200 | 0.1924 | 0.2016 |
|
76 |
+
| 0.8495 | 1.93 | 3600 | 0.1748 | 0.1853 |
|
77 |
+
| 0.7069 | 2.14 | 4000 | 0.1792 | 0.1682 |
|
78 |
+
| 0.7381 | 2.36 | 4400 | 0.1540 | 0.1524 |
|
79 |
+
| 0.6648 | 2.57 | 4800 | 0.1397 | 0.1477 |
|
80 |
+
| 0.7471 | 2.79 | 5200 | 0.1372 | 0.1389 |
|
81 |
+
| 0.7219 | 3.0 | 5600 | 0.1296 | 0.1308 |
|
82 |
+
| 0.5894 | 3.22 | 6000 | 0.1167 | 0.1287 |
|
83 |
+
| 0.585 | 3.43 | 6400 | 0.1194 | 0.1264 |
|
84 |
+
| 0.5486 | 3.65 | 6800 | 0.1159 | 0.1248 |
|
85 |
+
| 0.5001 | 3.86 | 7200 | 0.1107 | 0.1160 |
|
86 |
+
| 0.4838 | 4.08 | 7600 | 0.1079 | 0.1212 |
|
87 |
+
| 0.4213 | 4.29 | 8000 | 0.1065 | 0.1145 |
|
88 |
+
| 0.4493 | 4.5 | 8400 | 0.0998 | 0.1098 |
|
89 |
+
| 0.4003 | 4.72 | 8800 | 0.0975 | 0.1027 |
|
90 |
+
| 0.4034 | 4.93 | 9200 | 0.0947 | 0.1023 |
|
91 |
+
| 0.3699 | 5.15 | 9600 | 0.0927 | 0.1006 |
|
92 |
+
| 0.3748 | 5.36 | 10000 | 0.0955 | 0.0994 |
|
93 |
+
| 0.3681 | 5.58 | 10400 | 0.0923 | 0.0952 |
|
94 |
+
| 0.3416 | 5.79 | 10800 | 0.0902 | 0.0968 |
|
95 |
+
| 0.3594 | 6.01 | 11200 | 0.0848 | 0.0935 |
|
96 |
+
| 0.3303 | 6.22 | 11600 | 0.0889 | 0.0921 |
|
97 |
+
| 0.3205 | 6.43 | 12000 | 0.0843 | 0.0893 |
|
98 |
+
| 0.3267 | 6.65 | 12400 | 0.0884 | 0.0882 |
|
99 |
+
| 0.33 | 6.86 | 12800 | 0.0859 | 0.0936 |
|
100 |
+
| 0.3023 | 7.08 | 13200 | 0.0830 | 0.0851 |
|
101 |
+
| 0.3057 | 7.29 | 13600 | 0.0826 | 0.0860 |
|
102 |
+
| 0.3007 | 7.51 | 14000 | 0.0841 | 0.0836 |
|
103 |
+
| 0.2981 | 7.72 | 14400 | 0.0790 | 0.0817 |
|
104 |
+
| 0.282 | 7.94 | 14800 | 0.0761 | 0.0779 |
|
105 |
+
| 0.2758 | 8.15 | 15200 | 0.0767 | 0.0776 |
|
106 |
+
| 0.275 | 8.36 | 15600 | 0.0788 | 0.0781 |
|
107 |
+
| 0.283 | 8.58 | 16000 | 0.0728 | 0.0775 |
|
108 |
+
| 0.2684 | 8.79 | 16400 | 0.0722 | 0.0742 |
|
109 |
+
| 0.2701 | 9.01 | 16800 | 0.0742 | 0.0720 |
|
110 |
+
| 0.248 | 9.22 | 17200 | 0.0711 | 0.0729 |
|
111 |
+
| 0.2467 | 9.44 | 17600 | 0.0698 | 0.0711 |
|
112 |
+
| 0.2588 | 9.65 | 18000 | 0.0688 | 0.0710 |
|
113 |
+
| 0.2566 | 9.87 | 18400 | 0.0699 | 0.0708 |
|
114 |
+
| 0.2425 | 10.08 | 18800 | 0.0699 | 0.0683 |
|
115 |
+
| 0.2292 | 10.29 | 19200 | 0.0697 | 0.0662 |
|
116 |
+
| 0.2317 | 10.51 | 19600 | 0.0670 | 0.0663 |
|
117 |
+
| 0.2381 | 10.72 | 20000 | 0.0649 | 0.0648 |
|
118 |
+
| 0.2281 | 10.94 | 20400 | 0.0619 | 0.0621 |
|
119 |
+
| 0.2329 | 11.15 | 20800 | 0.0648 | 0.0627 |
|
120 |
+
| 0.2197 | 11.37 | 21200 | 0.0630 | 0.0632 |
|
121 |
+
| 0.2406 | 11.58 | 21600 | 0.0611 | 0.0609 |
|
122 |
+
| 0.2221 | 11.8 | 22000 | 0.0621 | 0.0601 |
|
123 |
+
| 0.2316 | 12.01 | 22400 | 0.0637 | 0.0596 |
|
124 |
+
| 0.202 | 12.23 | 22800 | 0.0622 | 0.0592 |
|
125 |
+
| 0.2071 | 12.44 | 23200 | 0.0603 | 0.0589 |
|
126 |
+
| 0.2119 | 12.65 | 23600 | 0.0589 | 0.0581 |
|
127 |
+
| 0.2072 | 12.87 | 24000 | 0.0586 | 0.0588 |
|
128 |
+
| 0.1948 | 13.08 | 24400 | 0.0576 | 0.0562 |
|
129 |
+
| 0.1967 | 13.3 | 24800 | 0.0573 | 0.0543 |
|
130 |
+
| 0.1981 | 13.51 | 25200 | 0.0582 | 0.0567 |
|
131 |
+
| 0.1869 | 13.73 | 25600 | 0.0550 | 0.0533 |
|
132 |
+
| 0.1929 | 13.94 | 26000 | 0.0530 | 0.0540 |
|
133 |
+
| 0.1837 | 14.16 | 26400 | 0.0550 | 0.0519 |
|
134 |
+
| 0.1823 | 14.37 | 26800 | 0.0535 | 0.0521 |
|
135 |
+
| 0.1756 | 14.58 | 27200 | 0.0552 | 0.0515 |
|
136 |
+
| 0.1769 | 14.8 | 27600 | 0.0553 | 0.0502 |
|
137 |
+
| 0.1769 | 15.01 | 28000 | 0.0516 | 0.0493 |
|
138 |
+
| 0.1781 | 15.23 | 28400 | 0.0519 | 0.0485 |
|
139 |
+
| 0.1763 | 15.44 | 28800 | 0.0511 | 0.0482 |
|
140 |
+
| 0.1705 | 15.66 | 29200 | 0.0513 | 0.0471 |
|
141 |
+
| 0.1696 | 15.87 | 29600 | 0.0484 | 0.0467 |
|
142 |
+
| 0.1668 | 16.09 | 30000 | 0.0492 | 0.0464 |
|
143 |
+
| 0.1635 | 16.3 | 30400 | 0.0492 | 0.0470 |
|
144 |
+
| 0.1597 | 16.51 | 30800 | 0.0505 | 0.0471 |
|
145 |
+
| 0.152 | 16.73 | 31200 | 0.0495 | 0.0471 |
|
146 |
+
| 0.1589 | 16.94 | 31600 | 0.0478 | 0.0456 |
|
147 |
+
| 0.1586 | 17.16 | 32000 | 0.0490 | 0.0441 |
|
148 |
+
| 0.1516 | 17.37 | 32400 | 0.0482 | 0.0448 |
|
149 |
+
| 0.1506 | 17.59 | 32800 | 0.0485 | 0.0439 |
|
150 |
+
| 0.1513 | 17.8 | 33200 | 0.0485 | 0.0439 |
|
151 |
+
| 0.1545 | 18.02 | 33600 | 0.0479 | 0.0432 |
|
152 |
+
| 0.1472 | 18.23 | 34000 | 0.0479 | 0.0428 |
|
153 |
+
| 0.148 | 18.45 | 34400 | 0.0475 | 0.0424 |
|
154 |
+
| 0.1446 | 18.66 | 34800 | 0.0477 | 0.0420 |
|
155 |
+
| 0.1413 | 18.87 | 35200 | 0.0466 | 0.0416 |
|
156 |
+
| 0.1398 | 19.09 | 35600 | 0.0477 | 0.0407 |
|
157 |
+
| 0.1431 | 19.3 | 36000 | 0.0466 | 0.0406 |
|
158 |
+
| 0.1437 | 19.52 | 36400 | 0.0467 | 0.0401 |
|
159 |
+
| 0.1393 | 19.73 | 36800 | 0.0468 | 0.0404 |
|
160 |
+
| 0.1416 | 19.95 | 37200 | 0.0465 | 0.0405 |
|
161 |
+
|
162 |
+
|
163 |
+
### Framework versions
|
164 |
+
|
165 |
+
- Transformers 4.28.1
|
166 |
+
- Pytorch 2.0.0+cu117
|
167 |
+
- Datasets 2.11.0
|
168 |
+
- Tokenizers 0.13.3
|