grahamaco commited on
Commit
cb592f0
verified
1 Parent(s): 7e0ad08

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +68 -0
README.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - question-answering
5
+ - complexity-classification
6
+ - distilbert
7
+ datasets:
8
+ - wesley7137/question_complexity_classification
9
+ ---
10
+
11
+ # question-complexity-classifier
12
+
13
+ 馃 Fine-tuned DistilBERT model for classifying question complexity (Simple vs Complex)
14
+
15
+ ## Model Details
16
+
17
+ ### Model Description
18
+ - **Architecture:** DistilBERT base uncased
19
+ - **Fine-tuned on:** Question Complexity Classification Dataset
20
+ - **Language:** English
21
+ - **License:** Apache 2.0
22
+ - **Max Sequence Length:** 128 tokens
23
+
24
+ ## Uses
25
+
26
+ ```python
27
+ from transformers import pipeline
28
+
29
+ classifier = pipeline(
30
+ "text-classification",
31
+ model="grahamaco/question-complexity-classifier",
32
+ tokenizer="grahamaco/question-complexity-classifier",
33
+ truncation=True,
34
+ max_length=128 # Matches training config
35
+ )
36
+
37
+ result = classifier("Explain quantum computing in simple terms")
38
+ # Output example: {'label': 'COMPLEX', 'score': 0.97}
39
+ ```
40
+
41
+ ## Training Details
42
+
43
+ - **Epochs:** 5
44
+ - **Batch Size:** 32 (global)
45
+ - **Learning Rate:** 2e-5
46
+ - **Train/Val/Test Split:** 80/10/10 (stratified)
47
+ - **Early Stopping:** Patience of 2 epochs
48
+
49
+ ## Evaluation Results
50
+
51
+ | Metric | Value |
52
+ |--------|-------|
53
+ | Accuracy | 0.92 |
54
+ | F1 Score | 0.91 |
55
+
56
+ ## Performance
57
+
58
+ | Metric | Value |
59
+ |--------|-------|
60
+ | Inference Latency | 15.2ms (CPU) |
61
+ | Throughput | 68.4 samples/sec (GPU) |
62
+
63
+ ## Ethical Considerations
64
+ This model is intended for educational content classification only. Developers should:
65
+ - Regularly audit performance across different question types
66
+ - Monitor for unintended bias in complexity assessments
67
+ - Provide human-review mechanisms for high-stakes classifications
68
+ - Validate classifications against original context when used with RAG systems