grace-pro commited on
Commit
5fa187b
1 Parent(s): a0a24f5

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +68 -0
README.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ metrics:
5
+ - precision
6
+ - recall
7
+ - f1
8
+ - accuracy
9
+ model-index:
10
+ - name: afriberta-small-hausa-5e-5
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # afriberta-small-hausa-5e-5
18
+
19
+ This model is a fine-tuned version of [castorini/afriberta_small](https://huggingface.co/castorini/afriberta_small) on the None dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.1600
22
+ - Precision: 0.6808
23
+ - Recall: 0.4937
24
+ - F1: 0.5724
25
+ - Accuracy: 0.9623
26
+
27
+ ## Model description
28
+
29
+ More information needed
30
+
31
+ ## Intended uses & limitations
32
+
33
+ More information needed
34
+
35
+ ## Training and evaluation data
36
+
37
+ More information needed
38
+
39
+ ## Training procedure
40
+
41
+ ### Training hyperparameters
42
+
43
+ The following hyperparameters were used during training:
44
+ - learning_rate: 5e-05
45
+ - train_batch_size: 16
46
+ - eval_batch_size: 8
47
+ - seed: 42
48
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
+ - lr_scheduler_type: linear
50
+ - num_epochs: 5
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
55
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
56
+ | 0.1523 | 1.0 | 1312 | 0.1338 | 0.6526 | 0.4261 | 0.5156 | 0.9583 |
57
+ | 0.1162 | 2.0 | 2624 | 0.1300 | 0.6862 | 0.4603 | 0.5510 | 0.9614 |
58
+ | 0.089 | 3.0 | 3936 | 0.1375 | 0.6953 | 0.4630 | 0.5559 | 0.9619 |
59
+ | 0.0698 | 4.0 | 5248 | 0.1507 | 0.6860 | 0.4888 | 0.5708 | 0.9623 |
60
+ | 0.0559 | 5.0 | 6560 | 0.1600 | 0.6808 | 0.4937 | 0.5724 | 0.9623 |
61
+
62
+
63
+ ### Framework versions
64
+
65
+ - Transformers 4.30.2
66
+ - Pytorch 2.0.1+cu118
67
+ - Datasets 2.13.1
68
+ - Tokenizers 0.13.3