Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +95 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -3.31 +/- 1.34
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fd18769ee94a84b299c4d230fe04395ffb0f2ae30cf1cf1a619631e27f40c8f6
|
3 |
+
size 108058
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fdd0fda94c0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fdd0fda79c0>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1682573923441688101,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"lr_schedule": {
|
31 |
+
":type:": "<class 'function'>",
|
32 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
33 |
+
},
|
34 |
+
"_last_obs": {
|
35 |
+
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAhl7APsFfDbx6FQE/hl7APsFfDbx6FQE/hl7APsFfDbx6FQE/hl7APsFfDbx6FQE/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAXeoFP0zOHj9l7TA/NDtOv/o5yb7xRX09pdSLv7/X0D8WXv++I+lUP0Ctyr41vzU/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACGXsA+wV8NvHoVAT9yWQw7/Nwtuwh0d7uGXsA+wV8NvHoVAT9yWQw7/Nwtuwh0d7uGXsA+wV8NvHoVAT9yWQw7/Nwtuwh0d7uGXsA+wV8NvHoVAT9yWQw7/Nwtuwh0d7uUaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[ 0.37572116 -0.00862879 0.50423396]\n [ 0.37572116 -0.00862879 0.50423396]\n [ 0.37572116 -0.00862879 0.50423396]\n [ 0.37572116 -0.00862879 0.50423396]]",
|
38 |
+
"desired_goal": "[[ 0.52310735 0.62033534 0.69112235]\n [-0.80559087 -0.39302045 0.06183428]\n [-1.0924269 1.631584 -0.4987647 ]\n [ 0.8316824 -0.39585304 0.70994884]]",
|
39 |
+
"observation": "[[ 0.37572116 -0.00862879 0.50423396 0.00214156 -0.00265294 -0.00377584]\n [ 0.37572116 -0.00862879 0.50423396 0.00214156 -0.00265294 -0.00377584]\n [ 0.37572116 -0.00862879 0.50423396 0.00214156 -0.00265294 -0.00377584]\n [ 0.37572116 -0.00862879 0.50423396 0.00214156 -0.00265294 -0.00377584]]"
|
40 |
+
},
|
41 |
+
"_last_episode_starts": {
|
42 |
+
":type:": "<class 'numpy.ndarray'>",
|
43 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
44 |
+
},
|
45 |
+
"_last_original_obs": {
|
46 |
+
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAmLwQPvlO8j2p1iM+opQLvnqst71lWoI+BZkMPgaM/L1ke4Y97QTnPSx15T3nBoY9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[ 0.14134443 0.11831469 0.15999855]\n [-0.13630918 -0.08968444 0.2545959 ]\n [ 0.13730247 -0.12331395 0.06566504]\n [ 0.11280236 0.11203989 0.06544285]]",
|
50 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
+
},
|
52 |
+
"_episode_num": 0,
|
53 |
+
"use_sde": false,
|
54 |
+
"sde_sample_freq": -1,
|
55 |
+
"_current_progress_remaining": 0.0,
|
56 |
+
"_stats_window_size": 100,
|
57 |
+
"ep_info_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIW5nwS/3cAcCUhpRSlIwBbJRLMowBdJRHQKdtL9uP3i91fZQoaAZoCWgPQwgtzEI7p9n6v5SGlFKUaBVLMmgWR0CnbPKyOaOQdX2UKGgGaAloD0MIjq89sySgAMCUhpRSlGgVSzJoFkdAp2yyuIRAbHV9lChoBmgJaA9DCIWUn1T7dA7AlIaUUpRoFUsyaBZHQKdsbhwVCX11fZQoaAZoCWgPQwj2fThIiOIQwJSGlFKUaBVLMmgWR0CnblJzLfUGdX2UKGgGaAloD0MIkrHa/L9q9b+UhpRSlGgVSzJoFkdAp24VuivgWXV9lChoBmgJaA9DCJNxjGSPEBPAlIaUUpRoFUsyaBZHQKdt1s9B8hN1fZQoaAZoCWgPQwgiwr8IGnP9v5SGlFKUaBVLMmgWR0CnbZMwco6TdX2UKGgGaAloD0MIZM3IIHfxB8CUhpRSlGgVSzJoFkdAp2/dA3T/hnV9lChoBmgJaA9DCJ/pJcYyvfW/lIaUUpRoFUsyaBZHQKdvoHerMkh1fZQoaAZoCWgPQwiDbi9pjBYZwJSGlFKUaBVLMmgWR0Cnb2DjrAxjdX2UKGgGaAloD0MIYI+JlGYzBsCUhpRSlGgVSzJoFkdAp28dMoMKC3V9lChoBmgJaA9DCNSAQdKnhRDAlIaUUpRoFUsyaBZHQKdxaWznied1fZQoaAZoCWgPQwhD5zV2iboSwJSGlFKUaBVLMmgWR0CncSyb6P8ydX2UKGgGaAloD0MIJA9EFmliAMCUhpRSlGgVSzJoFkdAp3DtCb+cY3V9lChoBmgJaA9DCMv3jERoBArAlIaUUpRoFUsyaBZHQKdwqVJtix51fZQoaAZoCWgPQwgjZYuk3cgAwJSGlFKUaBVLMmgWR0CncwfuCwr2dX2UKGgGaAloD0MIKJoHsMgPAMCUhpRSlGgVSzJoFkdAp3LLOkcjq3V9lChoBmgJaA9DCAngZvFiIQDAlIaUUpRoFUsyaBZHQKdyi5Xlr/N1fZQoaAZoCWgPQwhJRzmYTSAHwJSGlFKUaBVLMmgWR0CnckgLRa5gdX2UKGgGaAloD0MIEeLK2Tvj9b+UhpRSlGgVSzJoFkdAp3TlwDNhVnV9lChoBmgJaA9DCCFzZVBt0ALAlIaUUpRoFUsyaBZHQKd0qRWcSXd1fZQoaAZoCWgPQwj8pUV9klsJwJSGlFKUaBVLMmgWR0CndGra/RE4dX2UKGgGaAloD0MIZ9Km6h4ZCcCUhpRSlGgVSzJoFkdAp3Qm/QBxP3V9lChoBmgJaA9DCJ87wf7rXPq/lIaUUpRoFUsyaBZHQKd2mPz4DcN1fZQoaAZoCWgPQwi5Nem2RA4OwJSGlFKUaBVLMmgWR0Cndly1/lQudX2UKGgGaAloD0MIJclzfR/O/r+UhpRSlGgVSzJoFkdAp3YdI9TxXnV9lChoBmgJaA9DCEZB8Pj27va/lIaUUpRoFUsyaBZHQKd12TUy57R1fZQoaAZoCWgPQwh2OLpKd9cFwJSGlFKUaBVLMmgWR0CneFuYIBzWdX2UKGgGaAloD0MI/MIrSZ5r+L+UhpRSlGgVSzJoFkdAp3ge3vx6OnV9lChoBmgJaA9DCOwTQDGy5P6/lIaUUpRoFUsyaBZHQKd333oLXtl1fZQoaAZoCWgPQwgjaqLPR9kHwJSGlFKUaBVLMmgWR0Cnd5uymhugdX2UKGgGaAloD0MIutkfKLfdE8CUhpRSlGgVSzJoFkdAp3l/aBZpz3V9lChoBmgJaA9DCCwtI/WeKg3AlIaUUpRoFUsyaBZHQKd5QifQKKJ1fZQoaAZoCWgPQwggeedQhkoCwJSGlFKUaBVLMmgWR0CneQIphF3IdX2UKGgGaAloD0MI6/zbZb8uBMCUhpRSlGgVSzJoFkdAp3i9jqfOEHV9lChoBmgJaA9DCPxUFRqI5QHAlIaUUpRoFUsyaBZHQKd6ZUxVQyh1fZQoaAZoCWgPQwhcj8L1KCwQwJSGlFKUaBVLMmgWR0CneiflhgE2dX2UKGgGaAloD0MIjX40nDK3CcCUhpRSlGgVSzJoFkdAp3nnryDqW3V9lChoBmgJaA9DCFJgAUwZuATAlIaUUpRoFUsyaBZHQKd5o1TBInV1fZQoaAZoCWgPQwiSdw5lqEoAwJSGlFKUaBVLMmgWR0Cne1cdgfEGdX2UKGgGaAloD0MIhuRk4lYhBcCUhpRSlGgVSzJoFkdAp3sZpFkQPXV9lChoBmgJaA9DCBqiCn+GlwfAlIaUUpRoFUsyaBZHQKd62YYR/Vl1fZQoaAZoCWgPQwg3jliLT9EVwJSGlFKUaBVLMmgWR0CnepUAtFrmdX2UKGgGaAloD0MI3bbvUX89FsCUhpRSlGgVSzJoFkdAp3xCxqwhXHV9lChoBmgJaA9DCN1CVyJQ/QTAlIaUUpRoFUsyaBZHQKd8BYywfQt1fZQoaAZoCWgPQwjGbMmqCNcLwJSGlFKUaBVLMmgWR0Cne8VxbSqmdX2UKGgGaAloD0MIxXO2gNA6CcCUhpRSlGgVSzJoFkdAp3uAxHoX9HV9lChoBmgJaA9DCHriOVtAKBDAlIaUUpRoFUsyaBZHQKd9M2hqTKV1fZQoaAZoCWgPQwi2EyUhkbYGwJSGlFKUaBVLMmgWR0CnfPYYaYNRdX2UKGgGaAloD0MIRKfn3ViQA8CUhpRSlGgVSzJoFkdAp3y2Dxsl9nV9lChoBmgJaA9DCBvzOuKQzQXAlIaUUpRoFUsyaBZHQKd8cZeAuqZ1fZQoaAZoCWgPQwhgOq3boGYQwJSGlFKUaBVLMmgWR0CnfjAE+xGEdX2UKGgGaAloD0MI2UKQgxImBcCUhpRSlGgVSzJoFkdAp33ysr/bTXV9lChoBmgJaA9DCBLeHoSAnA/AlIaUUpRoFUsyaBZHQKd9sn62v0R1fZQoaAZoCWgPQwhbs5WX/I8EwJSGlFKUaBVLMmgWR0CnfW4M4LkTdX2UKGgGaAloD0MIZYwPs5fNBsCUhpRSlGgVSzJoFkdAp38jlvIfbXV9lChoBmgJaA9DCBrggmxZDhHAlIaUUpRoFUsyaBZHQKd+5lGwzLx1fZQoaAZoCWgPQwhRaFn3jxUbwJSGlFKUaBVLMmgWR0CnfqY150KadX2UKGgGaAloD0MIUvLqHANyDsCUhpRSlGgVSzJoFkdAp35hiNKh+XV9lChoBmgJaA9DCFBxHHi1HAXAlIaUUpRoFUsyaBZHQKeAFye7L+x1fZQoaAZoCWgPQwg8pYP1fz4dwJSGlFKUaBVLMmgWR0Cnf9nM+u/2dX2UKGgGaAloD0MIsky/RLx1CMCUhpRSlGgVSzJoFkdAp3+ZnanJk3V9lChoBmgJaA9DCN4DdF/O7ArAlIaUUpRoFUsyaBZHQKd/VWWhRIl1fZQoaAZoCWgPQwi6MNKL2v39v5SGlFKUaBVLMmgWR0CngRVH4GlidX2UKGgGaAloD0MIA9L+B1ibEcCUhpRSlGgVSzJoFkdAp4DX/o7muHV9lChoBmgJaA9DCNoeveE+shTAlIaUUpRoFUsyaBZHQKeAl7655JN1fZQoaAZoCWgPQwgKSPsfYM0ZwJSGlFKUaBVLMmgWR0CngFNRNyo5dX2UKGgGaAloD0MIexNDcjLxFcCUhpRSlGgVSzJoFkdAp4IPtv4ub3V9lChoBmgJaA9DCIyjchO1RBfAlIaUUpRoFUsyaBZHQKeB0mx+rlx1fZQoaAZoCWgPQwgEHhhA+HASwJSGlFKUaBVLMmgWR0CngZIwdsBRdX2UKGgGaAloD0MI46WbxCBwCMCUhpRSlGgVSzJoFkdAp4FNg4Otn3V9lChoBmgJaA9DCDFbsirCrRbAlIaUUpRoFUsyaBZHQKeC/3JxNqR1fZQoaAZoCWgPQwhF2PD0StkNwJSGlFKUaBVLMmgWR0CngsI1LrX2dX2UKGgGaAloD0MIBOeMKO2N/7+UhpRSlGgVSzJoFkdAp4KCPS2H+XV9lChoBmgJaA9DCCIzF7g8NgbAlIaUUpRoFUsyaBZHQKeCPaL4vex1fZQoaAZoCWgPQwgr+dhdoCQBwJSGlFKUaBVLMmgWR0Cng+nc+JP7dX2UKGgGaAloD0MIJ1DEIobNE8CUhpRSlGgVSzJoFkdAp4Osf3evZHV9lChoBmgJaA9DCMXFUbmJGgrAlIaUUpRoFUsyaBZHQKeDbDMvAXV1fZQoaAZoCWgPQwivJeSDnk0LwJSGlFKUaBVLMmgWR0CngyeqzZ6EdX2UKGgGaAloD0MIJa5jXHFRA8CUhpRSlGgVSzJoFkdAp4Tdvn8sMHV9lChoBmgJaA9DCOZ3msx4KxPAlIaUUpRoFUsyaBZHQKeEoG9Htnh1fZQoaAZoCWgPQwhQVaGBWNYGwJSGlFKUaBVLMmgWR0CnhGBDG96DdX2UKGgGaAloD0MIg9pv7UTJEMCUhpRSlGgVSzJoFkdAp4QbwF1SwXV9lChoBmgJaA9DCGiULv1LUgnAlIaUUpRoFUsyaBZHQKeF2H446wN1fZQoaAZoCWgPQwhosn+eBgwRwJSGlFKUaBVLMmgWR0CnhZtVrAP/dX2UKGgGaAloD0MI2J/E504wDcCUhpRSlGgVSzJoFkdAp4VbVc2R73V9lChoBmgJaA9DCGfTEcDNAgTAlIaUUpRoFUsyaBZHQKeFFs/pt791fZQoaAZoCWgPQwgW/DbEeE0GwJSGlFKUaBVLMmgWR0Cnhtma6STydX2UKGgGaAloD0MIQUgWMIFbDsCUhpRSlGgVSzJoFkdAp4acstkFwHV9lChoBmgJaA9DCE1MF2L15wPAlIaUUpRoFUsyaBZHQKeGXOHFglZ1fZQoaAZoCWgPQwhiEcMOY9IGwJSGlFKUaBVLMmgWR0CnhhivHLiddX2UKGgGaAloD0MIm+Wy0TlPEMCUhpRSlGgVSzJoFkdAp4fSCrcTJ3V9lChoBmgJaA9DCJDaxMn9bgjAlIaUUpRoFUsyaBZHQKeHlLmp2ll1fZQoaAZoCWgPQwhLBRVVvzIAwJSGlFKUaBVLMmgWR0Cnh1SUTtb+dX2UKGgGaAloD0MIOEnzx7Q2BcCUhpRSlGgVSzJoFkdAp4cQMa0hNnV9lChoBmgJaA9DCBZO0vwxbQjAlIaUUpRoFUsyaBZHQKeI+ZNwiq11fZQoaAZoCWgPQwg3xk54Cb4SwJSGlFKUaBVLMmgWR0CniL2Hck+pdX2UKGgGaAloD0MIu18F+G6TBcCUhpRSlGgVSzJoFkdAp4h9oUSIxnV9lChoBmgJaA9DCG5oyk4/oCHAlIaUUpRoFUsyaBZHQKeIOWZ7Xxx1ZS4="
|
60 |
+
},
|
61 |
+
"ep_success_buffer": {
|
62 |
+
":type:": "<class 'collections.deque'>",
|
63 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
+
},
|
65 |
+
"_n_updates": 50000,
|
66 |
+
"n_steps": 5,
|
67 |
+
"gamma": 0.99,
|
68 |
+
"gae_lambda": 1.0,
|
69 |
+
"ent_coef": 0.0,
|
70 |
+
"vf_coef": 0.5,
|
71 |
+
"max_grad_norm": 0.5,
|
72 |
+
"normalize_advantage": false,
|
73 |
+
"observation_space": {
|
74 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
75 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
76 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
77 |
+
"_shape": null,
|
78 |
+
"dtype": null,
|
79 |
+
"_np_random": null
|
80 |
+
},
|
81 |
+
"action_space": {
|
82 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
83 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
84 |
+
"dtype": "float32",
|
85 |
+
"_shape": [
|
86 |
+
3
|
87 |
+
],
|
88 |
+
"low": "[-1. -1. -1.]",
|
89 |
+
"high": "[1. 1. 1.]",
|
90 |
+
"bounded_below": "[ True True True]",
|
91 |
+
"bounded_above": "[ True True True]",
|
92 |
+
"_np_random": null
|
93 |
+
},
|
94 |
+
"n_envs": 4
|
95 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8d5bbb10549de15581294642c245e8f05aa8cd29c90bc7b7444ac3e66aa68891
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:42404fdc2981cbbbd94d92f4579efc1ce84776a7235f975a88423af50a22350c
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fdd0fda94c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fdd0fda79c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682573923441688101, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAhl7APsFfDbx6FQE/hl7APsFfDbx6FQE/hl7APsFfDbx6FQE/hl7APsFfDbx6FQE/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAXeoFP0zOHj9l7TA/NDtOv/o5yb7xRX09pdSLv7/X0D8WXv++I+lUP0Ctyr41vzU/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACGXsA+wV8NvHoVAT9yWQw7/Nwtuwh0d7uGXsA+wV8NvHoVAT9yWQw7/Nwtuwh0d7uGXsA+wV8NvHoVAT9yWQw7/Nwtuwh0d7uGXsA+wV8NvHoVAT9yWQw7/Nwtuwh0d7uUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.37572116 -0.00862879 0.50423396]\n [ 0.37572116 -0.00862879 0.50423396]\n [ 0.37572116 -0.00862879 0.50423396]\n [ 0.37572116 -0.00862879 0.50423396]]", "desired_goal": "[[ 0.52310735 0.62033534 0.69112235]\n [-0.80559087 -0.39302045 0.06183428]\n [-1.0924269 1.631584 -0.4987647 ]\n [ 0.8316824 -0.39585304 0.70994884]]", "observation": "[[ 0.37572116 -0.00862879 0.50423396 0.00214156 -0.00265294 -0.00377584]\n [ 0.37572116 -0.00862879 0.50423396 0.00214156 -0.00265294 -0.00377584]\n [ 0.37572116 -0.00862879 0.50423396 0.00214156 -0.00265294 -0.00377584]\n [ 0.37572116 -0.00862879 0.50423396 0.00214156 -0.00265294 -0.00377584]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAmLwQPvlO8j2p1iM+opQLvnqst71lWoI+BZkMPgaM/L1ke4Y97QTnPSx15T3nBoY9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.14134443 0.11831469 0.15999855]\n [-0.13630918 -0.08968444 0.2545959 ]\n [ 0.13730247 -0.12331395 0.06566504]\n [ 0.11280236 0.11203989 0.06544285]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIW5nwS/3cAcCUhpRSlIwBbJRLMowBdJRHQKdtL9uP3i91fZQoaAZoCWgPQwgtzEI7p9n6v5SGlFKUaBVLMmgWR0CnbPKyOaOQdX2UKGgGaAloD0MIjq89sySgAMCUhpRSlGgVSzJoFkdAp2yyuIRAbHV9lChoBmgJaA9DCIWUn1T7dA7AlIaUUpRoFUsyaBZHQKdsbhwVCX11fZQoaAZoCWgPQwj2fThIiOIQwJSGlFKUaBVLMmgWR0CnblJzLfUGdX2UKGgGaAloD0MIkrHa/L9q9b+UhpRSlGgVSzJoFkdAp24VuivgWXV9lChoBmgJaA9DCJNxjGSPEBPAlIaUUpRoFUsyaBZHQKdt1s9B8hN1fZQoaAZoCWgPQwgiwr8IGnP9v5SGlFKUaBVLMmgWR0CnbZMwco6TdX2UKGgGaAloD0MIZM3IIHfxB8CUhpRSlGgVSzJoFkdAp2/dA3T/hnV9lChoBmgJaA9DCJ/pJcYyvfW/lIaUUpRoFUsyaBZHQKdvoHerMkh1fZQoaAZoCWgPQwiDbi9pjBYZwJSGlFKUaBVLMmgWR0Cnb2DjrAxjdX2UKGgGaAloD0MIYI+JlGYzBsCUhpRSlGgVSzJoFkdAp28dMoMKC3V9lChoBmgJaA9DCNSAQdKnhRDAlIaUUpRoFUsyaBZHQKdxaWznied1fZQoaAZoCWgPQwhD5zV2iboSwJSGlFKUaBVLMmgWR0CncSyb6P8ydX2UKGgGaAloD0MIJA9EFmliAMCUhpRSlGgVSzJoFkdAp3DtCb+cY3V9lChoBmgJaA9DCMv3jERoBArAlIaUUpRoFUsyaBZHQKdwqVJtix51fZQoaAZoCWgPQwgjZYuk3cgAwJSGlFKUaBVLMmgWR0CncwfuCwr2dX2UKGgGaAloD0MIKJoHsMgPAMCUhpRSlGgVSzJoFkdAp3LLOkcjq3V9lChoBmgJaA9DCAngZvFiIQDAlIaUUpRoFUsyaBZHQKdyi5Xlr/N1fZQoaAZoCWgPQwhJRzmYTSAHwJSGlFKUaBVLMmgWR0CnckgLRa5gdX2UKGgGaAloD0MIEeLK2Tvj9b+UhpRSlGgVSzJoFkdAp3TlwDNhVnV9lChoBmgJaA9DCCFzZVBt0ALAlIaUUpRoFUsyaBZHQKd0qRWcSXd1fZQoaAZoCWgPQwj8pUV9klsJwJSGlFKUaBVLMmgWR0CndGra/RE4dX2UKGgGaAloD0MIZ9Km6h4ZCcCUhpRSlGgVSzJoFkdAp3Qm/QBxP3V9lChoBmgJaA9DCJ87wf7rXPq/lIaUUpRoFUsyaBZHQKd2mPz4DcN1fZQoaAZoCWgPQwi5Nem2RA4OwJSGlFKUaBVLMmgWR0Cndly1/lQudX2UKGgGaAloD0MIJclzfR/O/r+UhpRSlGgVSzJoFkdAp3YdI9TxXnV9lChoBmgJaA9DCEZB8Pj27va/lIaUUpRoFUsyaBZHQKd12TUy57R1fZQoaAZoCWgPQwh2OLpKd9cFwJSGlFKUaBVLMmgWR0CneFuYIBzWdX2UKGgGaAloD0MI/MIrSZ5r+L+UhpRSlGgVSzJoFkdAp3ge3vx6OnV9lChoBmgJaA9DCOwTQDGy5P6/lIaUUpRoFUsyaBZHQKd333oLXtl1fZQoaAZoCWgPQwgjaqLPR9kHwJSGlFKUaBVLMmgWR0Cnd5uymhugdX2UKGgGaAloD0MIutkfKLfdE8CUhpRSlGgVSzJoFkdAp3l/aBZpz3V9lChoBmgJaA9DCCwtI/WeKg3AlIaUUpRoFUsyaBZHQKd5QifQKKJ1fZQoaAZoCWgPQwggeedQhkoCwJSGlFKUaBVLMmgWR0CneQIphF3IdX2UKGgGaAloD0MI6/zbZb8uBMCUhpRSlGgVSzJoFkdAp3i9jqfOEHV9lChoBmgJaA9DCPxUFRqI5QHAlIaUUpRoFUsyaBZHQKd6ZUxVQyh1fZQoaAZoCWgPQwhcj8L1KCwQwJSGlFKUaBVLMmgWR0CneiflhgE2dX2UKGgGaAloD0MIjX40nDK3CcCUhpRSlGgVSzJoFkdAp3nnryDqW3V9lChoBmgJaA9DCFJgAUwZuATAlIaUUpRoFUsyaBZHQKd5o1TBInV1fZQoaAZoCWgPQwiSdw5lqEoAwJSGlFKUaBVLMmgWR0Cne1cdgfEGdX2UKGgGaAloD0MIhuRk4lYhBcCUhpRSlGgVSzJoFkdAp3sZpFkQPXV9lChoBmgJaA9DCBqiCn+GlwfAlIaUUpRoFUsyaBZHQKd62YYR/Vl1fZQoaAZoCWgPQwg3jliLT9EVwJSGlFKUaBVLMmgWR0CnepUAtFrmdX2UKGgGaAloD0MI3bbvUX89FsCUhpRSlGgVSzJoFkdAp3xCxqwhXHV9lChoBmgJaA9DCN1CVyJQ/QTAlIaUUpRoFUsyaBZHQKd8BYywfQt1fZQoaAZoCWgPQwjGbMmqCNcLwJSGlFKUaBVLMmgWR0Cne8VxbSqmdX2UKGgGaAloD0MIxXO2gNA6CcCUhpRSlGgVSzJoFkdAp3uAxHoX9HV9lChoBmgJaA9DCHriOVtAKBDAlIaUUpRoFUsyaBZHQKd9M2hqTKV1fZQoaAZoCWgPQwi2EyUhkbYGwJSGlFKUaBVLMmgWR0CnfPYYaYNRdX2UKGgGaAloD0MIRKfn3ViQA8CUhpRSlGgVSzJoFkdAp3y2Dxsl9nV9lChoBmgJaA9DCBvzOuKQzQXAlIaUUpRoFUsyaBZHQKd8cZeAuqZ1fZQoaAZoCWgPQwhgOq3boGYQwJSGlFKUaBVLMmgWR0CnfjAE+xGEdX2UKGgGaAloD0MI2UKQgxImBcCUhpRSlGgVSzJoFkdAp33ysr/bTXV9lChoBmgJaA9DCBLeHoSAnA/AlIaUUpRoFUsyaBZHQKd9sn62v0R1fZQoaAZoCWgPQwhbs5WX/I8EwJSGlFKUaBVLMmgWR0CnfW4M4LkTdX2UKGgGaAloD0MIZYwPs5fNBsCUhpRSlGgVSzJoFkdAp38jlvIfbXV9lChoBmgJaA9DCBrggmxZDhHAlIaUUpRoFUsyaBZHQKd+5lGwzLx1fZQoaAZoCWgPQwhRaFn3jxUbwJSGlFKUaBVLMmgWR0CnfqY150KadX2UKGgGaAloD0MIUvLqHANyDsCUhpRSlGgVSzJoFkdAp35hiNKh+XV9lChoBmgJaA9DCFBxHHi1HAXAlIaUUpRoFUsyaBZHQKeAFye7L+x1fZQoaAZoCWgPQwg8pYP1fz4dwJSGlFKUaBVLMmgWR0Cnf9nM+u/2dX2UKGgGaAloD0MIsky/RLx1CMCUhpRSlGgVSzJoFkdAp3+ZnanJk3V9lChoBmgJaA9DCN4DdF/O7ArAlIaUUpRoFUsyaBZHQKd/VWWhRIl1fZQoaAZoCWgPQwi6MNKL2v39v5SGlFKUaBVLMmgWR0CngRVH4GlidX2UKGgGaAloD0MIA9L+B1ibEcCUhpRSlGgVSzJoFkdAp4DX/o7muHV9lChoBmgJaA9DCNoeveE+shTAlIaUUpRoFUsyaBZHQKeAl7655JN1fZQoaAZoCWgPQwgKSPsfYM0ZwJSGlFKUaBVLMmgWR0CngFNRNyo5dX2UKGgGaAloD0MIexNDcjLxFcCUhpRSlGgVSzJoFkdAp4IPtv4ub3V9lChoBmgJaA9DCIyjchO1RBfAlIaUUpRoFUsyaBZHQKeB0mx+rlx1fZQoaAZoCWgPQwgEHhhA+HASwJSGlFKUaBVLMmgWR0CngZIwdsBRdX2UKGgGaAloD0MI46WbxCBwCMCUhpRSlGgVSzJoFkdAp4FNg4Otn3V9lChoBmgJaA9DCDFbsirCrRbAlIaUUpRoFUsyaBZHQKeC/3JxNqR1fZQoaAZoCWgPQwhF2PD0StkNwJSGlFKUaBVLMmgWR0CngsI1LrX2dX2UKGgGaAloD0MIBOeMKO2N/7+UhpRSlGgVSzJoFkdAp4KCPS2H+XV9lChoBmgJaA9DCCIzF7g8NgbAlIaUUpRoFUsyaBZHQKeCPaL4vex1fZQoaAZoCWgPQwgr+dhdoCQBwJSGlFKUaBVLMmgWR0Cng+nc+JP7dX2UKGgGaAloD0MIJ1DEIobNE8CUhpRSlGgVSzJoFkdAp4Osf3evZHV9lChoBmgJaA9DCMXFUbmJGgrAlIaUUpRoFUsyaBZHQKeDbDMvAXV1fZQoaAZoCWgPQwivJeSDnk0LwJSGlFKUaBVLMmgWR0CngyeqzZ6EdX2UKGgGaAloD0MIJa5jXHFRA8CUhpRSlGgVSzJoFkdAp4Tdvn8sMHV9lChoBmgJaA9DCOZ3msx4KxPAlIaUUpRoFUsyaBZHQKeEoG9Htnh1fZQoaAZoCWgPQwhQVaGBWNYGwJSGlFKUaBVLMmgWR0CnhGBDG96DdX2UKGgGaAloD0MIg9pv7UTJEMCUhpRSlGgVSzJoFkdAp4QbwF1SwXV9lChoBmgJaA9DCGiULv1LUgnAlIaUUpRoFUsyaBZHQKeF2H446wN1fZQoaAZoCWgPQwhosn+eBgwRwJSGlFKUaBVLMmgWR0CnhZtVrAP/dX2UKGgGaAloD0MI2J/E504wDcCUhpRSlGgVSzJoFkdAp4VbVc2R73V9lChoBmgJaA9DCGfTEcDNAgTAlIaUUpRoFUsyaBZHQKeFFs/pt791fZQoaAZoCWgPQwgW/DbEeE0GwJSGlFKUaBVLMmgWR0Cnhtma6STydX2UKGgGaAloD0MIQUgWMIFbDsCUhpRSlGgVSzJoFkdAp4acstkFwHV9lChoBmgJaA9DCE1MF2L15wPAlIaUUpRoFUsyaBZHQKeGXOHFglZ1fZQoaAZoCWgPQwhiEcMOY9IGwJSGlFKUaBVLMmgWR0CnhhivHLiddX2UKGgGaAloD0MIm+Wy0TlPEMCUhpRSlGgVSzJoFkdAp4fSCrcTJ3V9lChoBmgJaA9DCJDaxMn9bgjAlIaUUpRoFUsyaBZHQKeHlLmp2ll1fZQoaAZoCWgPQwhLBRVVvzIAwJSGlFKUaBVLMmgWR0Cnh1SUTtb+dX2UKGgGaAloD0MIOEnzx7Q2BcCUhpRSlGgVSzJoFkdAp4cQMa0hNnV9lChoBmgJaA9DCBZO0vwxbQjAlIaUUpRoFUsyaBZHQKeI+ZNwiq11fZQoaAZoCWgPQwg3xk54Cb4SwJSGlFKUaBVLMmgWR0CniL2Hck+pdX2UKGgGaAloD0MIu18F+G6TBcCUhpRSlGgVSzJoFkdAp4h9oUSIxnV9lChoBmgJaA9DCG5oyk4/oCHAlIaUUpRoFUsyaBZHQKeIOWZ7Xxx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (673 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -3.3065506705548615, "std_reward": 1.3405915718073553, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-27T06:30:01.612518"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:82975399c206537a282839e4e8f021ed0d10a5c715822f10ac19192558781cb1
|
3 |
+
size 2381
|