thxCode commited on
Commit
83b4088
0 Parent(s):

feat: first commit

Browse files

Signed-off-by: thxCode <thxcode0824@gmail.com>

.gitattributes ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ *.gguf filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,223 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ language:
5
+ - en
6
+ tags:
7
+ - reranker
8
+ - cross-encoder
9
+ - transformers.js
10
+ pipeline_tag: text-classification
11
+ ---
12
+
13
+ # jina-reranker-v1-turbo-en-GGUF
14
+
15
+ **Model creator**: [Jina AI](https://huggingface.co/jinaai)<br/>
16
+ **Original model**: [jina-reranker-v1-turbo-en](https://huggingface.co/jinaai/jina-reranker-v1-turbo-en)<br/>
17
+ **GGUF quantization**: based on llama.cpp release [cc298](https://github.com/ggerganov/llama.cpp/commit/cc2983d3753c94a630ca7257723914d4c4f6122b)
18
+
19
+
20
+ <br><br>
21
+
22
+ <p align="center">
23
+ <img src="https://aeiljuispo.cloudimg.io/v7/https://cdn-uploads.huggingface.co/production/uploads/603763514de52ff951d89793/AFoybzd5lpBQXEBrQHuTt.png?w=200&h=200&f=face" alt="Finetuner logo: Finetuner helps you to create experiments in order to improve embeddings on search tasks. It accompanies you to deliver the last mile of performance-tuning for neural search applications." width="150px">
24
+ </p>
25
+
26
+ <p align="center">
27
+ <b>Trained by <a href="https://jina.ai/"><b>Jina AI</b></a>.</b>
28
+ </p>
29
+
30
+ # jina-reranker-v1-turbo-en
31
+
32
+ This model is designed for **blazing-fast** reranking while maintaining **competitive performance**. What's more, it leverages the power of our [JinaBERT](https://arxiv.org/abs/2310.19923) model as its foundation. `JinaBERT` itself is a unique variant of the BERT architecture that supports the symmetric bidirectional variant of [ALiBi](https://arxiv.org/abs/2108.12409). This allows `jina-reranker-v1-turbo-en` to process significantly longer sequences of text compared to other reranking models, up to an impressive **8,192** tokens.
33
+
34
+ To achieve the remarkable speed, the `jina-reranker-v1-turbo-en` employ a technique called knowledge distillation. Here, a complex, but slower, model (like our original [jina-reranker-v1-base-en](https://jina.ai/reranker/)) acts as a teacher, condensing its knowledge into a smaller, faster student model. This student retains most of the teacher's knowledge, allowing it to deliver similar accuracy in a fraction of the time.
35
+
36
+ Here's a breakdown of the reranker models we provide:
37
+
38
+ | Model Name | Layers | Hidden Size | Parameters (Millions) |
39
+ | ------------------------------------------------------------------------------------ | ------ | ----------- | --------------------- |
40
+ | [jina-reranker-v1-base-en](https://jina.ai/reranker/) | 12 | 768 | 137.0 |
41
+ | [jina-reranker-v1-turbo-en](https://huggingface.co/jinaai/jina-reranker-v1-turbo-en) | 6 | 384 | 37.8 |
42
+ | [jina-reranker-v1-tiny-en](https://huggingface.co/jinaai/jina-reranker-v1-tiny-en) | 4 | 384 | 33.0 |
43
+
44
+ > Currently, the `jina-reranker-v1-base-en` model is not available on Hugging Face. You can access it via the [Jina AI Reranker API](https://jina.ai/reranker/).
45
+
46
+ As you can see, the `jina-reranker-v1-turbo-en` offers a balanced approach with **6 layers** and **37.8 million** parameters. This translates to fast search and reranking while preserving a high degree of accuracy. The `jina-reranker-v1-tiny-en` prioritizes speed even further, achieving the fastest inference speeds with its **4-layer**, **33.0 million** parameter architecture. This makes it ideal for scenarios where absolute top accuracy is less crucial.
47
+
48
+ # Usage
49
+
50
+ 1. The easiest way to starting using `jina-reranker-v1-turbo-en` is to use Jina AI's [Reranker API](https://jina.ai/reranker/).
51
+
52
+ ```bash
53
+ curl https://api.jina.ai/v1/rerank \
54
+ -H "Content-Type: application/json" \
55
+ -H "Authorization: Bearer YOUR_API_KEY" \
56
+ -d '{
57
+ "model": "jina-reranker-v1-turbo-en",
58
+ "query": "Organic skincare products for sensitive skin",
59
+ "documents": [
60
+ "Eco-friendly kitchenware for modern homes",
61
+ "Biodegradable cleaning supplies for eco-conscious consumers",
62
+ "Organic cotton baby clothes for sensitive skin",
63
+ "Natural organic skincare range for sensitive skin",
64
+ "Tech gadgets for smart homes: 2024 edition",
65
+ "Sustainable gardening tools and compost solutions",
66
+ "Sensitive skin-friendly facial cleansers and toners",
67
+ "Organic food wraps and storage solutions",
68
+ "All-natural pet food for dogs with allergies",
69
+ "Yoga mats made from recycled materials"
70
+ ],
71
+ "top_n": 3
72
+ }'
73
+ ```
74
+
75
+ 2. Alternatively, you can use the latest version of the `sentence-transformers>=0.27.0` library. You can install it via pip:
76
+
77
+ ```bash
78
+ pip install -U sentence-transformers
79
+ ```
80
+
81
+ Then, you can use the following code to interact with the model:
82
+
83
+ ```python
84
+ from sentence_transformers import CrossEncoder
85
+
86
+ # Load the model, here we use our turbo sized model
87
+ model = CrossEncoder("jinaai/jina-reranker-v1-turbo-en", trust_remote_code=True)
88
+
89
+ # Example query and documents
90
+ query = "Organic skincare products for sensitive skin"
91
+ documents = [
92
+ "Eco-friendly kitchenware for modern homes",
93
+ "Biodegradable cleaning supplies for eco-conscious consumers",
94
+ "Organic cotton baby clothes for sensitive skin",
95
+ "Natural organic skincare range for sensitive skin",
96
+ "Tech gadgets for smart homes: 2024 edition",
97
+ "Sustainable gardening tools and compost solutions",
98
+ "Sensitive skin-friendly facial cleansers and toners",
99
+ "Organic food wraps and storage solutions",
100
+ "All-natural pet food for dogs with allergies",
101
+ "Yoga mats made from recycled materials"
102
+ ]
103
+
104
+ results = model.rank(query, documents, return_documents=True, top_k=3)
105
+ ```
106
+
107
+ 3. You can also use the `transformers` library to interact with the model programmatically.
108
+
109
+ ```python
110
+ !pip install transformers
111
+ from transformers import AutoModelForSequenceClassification
112
+
113
+ model = AutoModelForSequenceClassification.from_pretrained(
114
+ 'jinaai/jina-reranker-v1-turbo-en', num_labels=1, trust_remote_code=True
115
+ )
116
+
117
+ # Example query and documents
118
+ query = "Organic skincare products for sensitive skin"
119
+ documents = [
120
+ "Eco-friendly kitchenware for modern homes",
121
+ "Biodegradable cleaning supplies for eco-conscious consumers",
122
+ "Organic cotton baby clothes for sensitive skin",
123
+ "Natural organic skincare range for sensitive skin",
124
+ "Tech gadgets for smart homes: 2024 edition",
125
+ "Sustainable gardening tools and compost solutions",
126
+ "Sensitive skin-friendly facial cleansers and toners",
127
+ "Organic food wraps and storage solutions",
128
+ "All-natural pet food for dogs with allergies",
129
+ "Yoga mats made from recycled materials"
130
+ ]
131
+
132
+ # construct sentence pairs
133
+ sentence_pairs = [[query, doc] for doc in documents]
134
+
135
+ scores = model.compute_score(sentence_pairs)
136
+ ```
137
+
138
+ 4. You can also use the `transformers.js` library to run the model directly in JavaScript (in-browser, Node.js, Deno, etc.)!
139
+
140
+ If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using:
141
+ ```bash
142
+ npm i @xenova/transformers
143
+ ```
144
+
145
+ Then, you can use the following code to interact with the model:
146
+ ```js
147
+ import { AutoTokenizer, AutoModelForSequenceClassification } from '@xenova/transformers';
148
+
149
+ const model_id = 'jinaai/jina-reranker-v1-turbo-en';
150
+ const model = await AutoModelForSequenceClassification.from_pretrained(model_id, { quantized: false });
151
+ const tokenizer = await AutoTokenizer.from_pretrained(model_id);
152
+
153
+ /**
154
+ * Performs ranking with the CrossEncoder on the given query and documents. Returns a sorted list with the document indices and scores.
155
+ * @param {string} query A single query
156
+ * @param {string[]} documents A list of documents
157
+ * @param {Object} options Options for ranking
158
+ * @param {number} [options.top_k=undefined] Return the top-k documents. If undefined, all documents are returned.
159
+ * @param {number} [options.return_documents=false] If true, also returns the documents. If false, only returns the indices and scores.
160
+ */
161
+ async function rank(query, documents, {
162
+ top_k = undefined,
163
+ return_documents = false,
164
+ } = {}) {
165
+ const inputs = tokenizer(
166
+ new Array(documents.length).fill(query),
167
+ { text_pair: documents, padding: true, truncation: true }
168
+ )
169
+ const { logits } = await model(inputs);
170
+ return logits.sigmoid().tolist()
171
+ .map(([score], i) => ({
172
+ corpus_id: i,
173
+ score,
174
+ ...(return_documents ? { text: documents[i] } : {})
175
+ })).sort((a, b) => b.score - a.score).slice(0, top_k);
176
+ }
177
+
178
+ // Example usage:
179
+ const query = "Organic skincare products for sensitive skin"
180
+ const documents = [
181
+ "Eco-friendly kitchenware for modern homes",
182
+ "Biodegradable cleaning supplies for eco-conscious consumers",
183
+ "Organic cotton baby clothes for sensitive skin",
184
+ "Natural organic skincare range for sensitive skin",
185
+ "Tech gadgets for smart homes: 2024 edition",
186
+ "Sustainable gardening tools and compost solutions",
187
+ "Sensitive skin-friendly facial cleansers and toners",
188
+ "Organic food wraps and storage solutions",
189
+ "All-natural pet food for dogs with allergies",
190
+ "Yoga mats made from recycled materials",
191
+ ]
192
+
193
+ const results = await rank(query, documents, { return_documents: true, top_k: 3 });
194
+ console.log(results);
195
+ ```
196
+
197
+ That's it! You can now use the `jina-reranker-v1-turbo-en` model in your projects.
198
+
199
+ # Evaluation
200
+
201
+ We evaluated Jina Reranker on 3 key benchmarks to ensure top-tier performance and search relevance.
202
+
203
+ | Model Name | NDCG@10 (17 BEIR datasets) | NDCG@10 (5 LoCo datasets) | Hit Rate (LlamaIndex RAG) |
204
+ | ------------------------------------------- | -------------------------- | ------------------------- | ------------------------- |
205
+ | `jina-reranker-v1-base-en` | **52.45** | **87.31** | **85.53** |
206
+ | `jina-reranker-v1-turbo-en` (you are here) | **49.60** | **69.21** | **85.13** |
207
+ | `jina-reranker-v1-tiny-en` | **48.54** | **70.29** | **85.00** |
208
+ | `mxbai-rerank-base-v1` | 49.19 | - | 82.50 |
209
+ | `mxbai-rerank-xsmall-v1` | 48.80 | - | 83.69 |
210
+ | `ms-marco-MiniLM-L-6-v2` | 48.64 | - | 82.63 |
211
+ | `ms-marco-MiniLM-L-4-v2` | 47.81 | - | 83.82 |
212
+ | `bge-reranker-base` | 47.89 | - | 83.03 |
213
+
214
+ **Note:**
215
+
216
+ - `NDCG@10` is a measure of ranking quality, with higher scores indicating better search results. `Hit Rate` measures the percentage of relevant documents that appear in the top 10 search results.
217
+ - The results of LoCo datasets on other models are not available since they **do not support** long documents more than 512 tokens.
218
+
219
+ For more details, please refer to our [benchmarking sheets](https://docs.google.com/spreadsheets/d/1V8pZjENdBBqrKMzZzOWc2aL60wtnR0yrEBY3urfO5P4/edit?usp=sharing).
220
+
221
+ # Contact
222
+
223
+ Join our [Discord community](https://discord.jina.ai/) and chat with other community members about ideas.
jina-reranker-v1-turbo-en-FP16.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:71abc010bb3dce97812ee971509a5cb6ff6f6b8cfffd8480129242f605521fca
3
+ size 76971168
jina-reranker-v1-turbo-en-Q2_K.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:02380e18328a4346a24962aa3268383890a4abc7b80156898a5119a62252ec4d
3
+ size 34172064
jina-reranker-v1-turbo-en-Q3_K.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:39c5c164ee30d14dac650baa5ff61f4024af3b47866e74a564237a6e41556b4f
3
+ size 34881696
jina-reranker-v1-turbo-en-Q4_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7210ba72d2776012befb041e7cba8d969c6f480614a9fb9cc0e82350a2867907
3
+ size 34642080
jina-reranker-v1-turbo-en-Q4_K_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:40b047447806fbcdd3335c49616cfb85f92140d4760f1b44a5b88aa02d279aa3
3
+ size 36383904
jina-reranker-v1-turbo-en-Q5_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:306520727b0e09b2ee8fe5c986c9ae5b6d51c9f7bd4e85560da767c8a68d841b
3
+ size 36411552
jina-reranker-v1-turbo-en-Q5_K_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c633a5398bd191dec8097262ca1713a70eae62c085295d5422fc0445c3cf1c5a
3
+ size 37323936
jina-reranker-v1-turbo-en-Q6_K.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fcc30faf294ab8982640a3e31fb4d656bf3927b81b4472ffea4c01392a2fb0a7
3
+ size 40862880
jina-reranker-v1-turbo-en-Q8_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6633027dd42a9490313504ce698dcd8bbd44f8694e58ab555e2d06d8535f4f86
3
+ size 41719968