Uploading LundarLnader Trained Agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v1.zip +3 -0
- ppo-LunarLander-v1/_stable_baselines3_version +1 -0
- ppo-LunarLander-v1/data +99 -0
- ppo-LunarLander-v1/policy.optimizer.pth +3 -0
- ppo-LunarLander-v1/policy.pth +3 -0
- ppo-LunarLander-v1/pytorch_variables.pth +3 -0
- ppo-LunarLander-v1/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 268.49 +/- 14.09
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d657ea6d090>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d657ea6d120>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d657ea6d1b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d657ea6d240>", "_build": "<function ActorCriticPolicy._build at 0x7d657ea6d2d0>", "forward": "<function ActorCriticPolicy.forward at 0x7d657ea6d360>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d657ea6d3f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d657ea6d480>", "_predict": "<function ActorCriticPolicy._predict at 0x7d657ea6d510>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d657ea6d5a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d657ea6d630>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d657ea6d6c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d657ea71780>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2558976, "_total_timesteps": 10000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689590231803160877, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAFqf9D29p0A+gwdMvjd19r7fI4E8YpwBvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.7441024, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQDdOkLx7RfGMAWyUS32MAXSUR0C0dVTFdcB2dX2UKGgGR0Bvl2Hck+otaAdLs2gIR0C0dZZkf9xZdX2UKGgGR0BwSHQpnYg8aAdLqmgIR0C0ddLL+xW1dX2UKGgGR0BybqLjxTbWaAdLyWgIR0C0dmZA+pwTdX2UKGgGR0BzzqvaDf3waAdL72gIR0C0dr894eLfdX2UKGgGR0BxKPneSB9UaAdLyGgIR0C0dwhU70WedX2UKGgGR0BvXVKyv9tNaAdLsWgIR0C0d0efZmI1dX2UKGgGR0A/hYlY2bXpaAdLgGgIR0C0d3fJFLFodX2UKGgGR0Bwyb7pFCswaAdLsGgIR0C0eAFdkauPdX2UKGgGR0ByGDEFW4mUaAdLvGgIR0C0eEYdMj/udX2UKGgGR0ByFGOEM9bHaAdLxGgIR0C0eI3Ehq0udX2UKGgGR0Bxh3rNW2gGaAdLsGgIR0C0eM7mp2lmdX2UKGgGR0BwbnEYO2AoaAdLxGgIR0C0eRNZA6dUdX2UKGgGR0BxLaXZ5AyEaAdLs2gIR0C0eVMSkCV9dX2UKGgGR0BxvbeXRgJDaAdLrWgIR0C0edkmD15CdX2UKGgGR0BvRHxx1gYxaAdLrGgIR0C0ei5hz/6wdX2UKGgGR0BwmlXYDklvaAdLm2gIR0C0ennG0eEJdX2UKGgGR0Bw0F9w3o9taAdLtGgIR0C0es1PSDywdX2UKGgGR0Bxp1h3JPqLaAdLx2gIR0C0eyy5I6KcdX2UKGgGR0BvjlMAWBSUaAdLzmgIR0C0fAMRcu8LdX2UKGgGR0Bzhz4k/r0KaAdL2WgIR0C0fHn3QD3edX2UKGgGR0ByfNKXfIjoaAdL5mgIR0C0fPbFfiPydX2UKGgGR0By0+AhB7eEaAdLj2gIR0C0fUOpjtojdX2UKGgGR0By0Jz+3pfQaAdLzWgIR0C0fbRbOeJ6dX2UKGgGR0BwuBGx2SuAaAdLt2gIR0C0fgJBPbfxdX2UKGgGR0A8rtBv73wkaAdLg2gIR0C0fnpZntfHdX2UKGgGR0ByqfthNM4+aAdL9WgIR0C0fta814xDdX2UKGgGR0BxHa5WilBQaAdLymgIR0C0fx3mFJxvdX2UKGgGR0By8+yPdVNpaAdL9GgIR0C0f3Zng5zYdX2UKGgGR0BNf7Fjurp8aAdLbWgIR0C0f57q+rU9dX2UKGgGR0BwkZZ0Syt3aAdLx2gIR0C0gC3xBmf5dX2UKGgGR0BvWNFDv3JxaAdLxmgIR0C0gHcDbJwLdX2UKGgGR0ByXLAEdNnHaAdLxmgIR0C0gMH0K7ZndX2UKGgGR0BJb1EmY0EYaAdLcGgIR0C0gOuSB9ThdX2UKGgGR0Byw9o4+8oQaAdLyGgIR0C0gTSZOSGKdX2UKGgGR0Bw+dTcZccEaAdLqWgIR0C0gXJbt7a7dX2UKGgGR0A92VTaTOgQaAdLgmgIR0C0gem8274BdX2UKGgGR0BxiMZKnNxEaAdLwWgIR0C0gjMGxD9gdX2UKGgGR0BxPSE9Mbm2aAdLuWgIR0C0gniFj/dZdX2UKGgGR0BxaeHxjJ+2aAdLymgIR0C0gsrftQbddX2UKGgGR0BTDb7j1f3OaAdLd2gIR0C0gvaYeDFqdX2UKGgGR0BxvPFCLMs6aAdL3WgIR0C0g0ah6By0dX2UKGgGR0Bw6o7MgU1yaAdLsGgIR0C0g9AEU0vXdX2UKGgGR0BxMDWNFSbZaAdLsWgIR0C0hBF/lQuVdX2UKGgGR0Bx0fgl4TsZaAdLk2gIR0C0hEfJA+pwdX2UKGgGR0BLVU70WdmQaAdLfGgIR0C0hHRgeA/cdX2UKGgGR0A6kk7fYSQHaAdLTGgIR0C0hI/GZNO/dX2UKGgGR0Bzkk5ZKWcCaAdNPAFoCEdAtIUAYgq3E3V9lChoBkdAcZ7TWXkYGmgHS55oCEdAtIWAWCVbA3V9lChoBkdAc1bDMeOn22gHS+JoCEdAtIXV4xDb8HV9lChoBkdAbchH6MzdlGgHTWsBaAhHQLSGXzj3mFJ1fZQoaAZHQHIMkYfnwG5oB0vMaAhHQLSGrFocrAh1fZQoaAZHQHHoMbNr0rdoB0vwaAhHQLSHThJiAlR1fZQoaAZHQHBH/A44p+doB0uqaAhHQLSHi+0gKWt1fZQoaAZHQHEr5X2dupFoB0v8aAhHQLSH+v9tMwl1fZQoaAZHQEMJsguAZsNoB0tsaAhHQLSIMI3R5Tt1fZQoaAZHQDSMwaisXBRoB0t7aAhHQLSIbZkTYd11fZQoaAZHQHE1DbWVeKNoB0u7aAhHQLSIxJbt7a91fZQoaAZHQG+n1vVEuxtoB0vVaAhHQLSJnFhXr+p1fZQoaAZHQHFvgyEcsDpoB0u+aAhHQLSKA/axoqV1fZQoaAZHQElasI3R5TtoB0uVaAhHQLSKVI+4b0h1fZQoaAZHQHFq/HLidatoB0u5aAhHQLSKubWmP5p1fZQoaAZHQHGkWjbi6xxoB0viaAhHQLSLN8RL9Mt1fZQoaAZHQHB/cRDkU9JoB0vBaAhHQLSMAS00FbF1fZQoaAZHQG7Vo/zJ6ppoB0vRaAhHQLSMUOtW+491fZQoaAZHQHM+4cJdB0JoB0vjaAhHQLSMoumaYu11fZQoaAZHQHEYwo5PuXxoB0u6aAhHQLSM52zOX3R1fZQoaAZHQHE7EBfa6BloB0u9aAhHQLSNLQfp2U11fZQoaAZHQHIce5vtMPBoB0vxaAhHQLSNx41P3zt1fZQoaAZHQG+ATy8SPENoB0upaAhHQLSOCGA08/51fZQoaAZHQHFCGcOLBKtoB0viaAhHQLSOXSuyNXJ1fZQoaAZHQHCzq42CNCJoB0u4aAhHQLSOpEORT0h1fZQoaAZHQHJDeVLSNOxoB0vkaAhHQLSO/OG0u151fZQoaAZHQHGjiCOFQEZoB0ucaAhHQLSPfnE2pAF1fZQoaAZHQHJlA+UyHmBoB0vDaAhHQLSPxgpSaVl1fZQoaAZHQHIf/jjrAxloB0vTaAhHQLSQFAymALB1fZQoaAZHQHHVxaouPFNoB0u5aAhHQLSQWHpKSPl1fZQoaAZHQHC/osqaw2VoB0uzaAhHQLSQm38n/kx1fZQoaAZHQHJGQDaGpMpoB0vhaAhHQLSQ7jI7vG91fZQoaAZHQEt7q46Oo5xoB0t8aAhHQLSRaJYDDCR1fZQoaAZHQExhIBikO7RoB0t/aAhHQLSRlpxm03R1fZQoaAZHQHFnLQb+98JoB0vDaAhHQLSR3vxYq5N1fZQoaAZHQG+c8uJ1q35oB0u9aAhHQLSSKMnZ00Z1fZQoaAZHQHKITYZl4C9oB0vwaAhHQLSSf3DvVmV1fZQoaAZHQGzfK//NqxloB0umaAhHQLSTAEJjUd91fZQoaAZHQHB829xp+MJoB0u9aAhHQLSTRrC3w1B1fZQoaAZHQHJUXFPznRtoB0vLaAhHQLSTkayrxRV1fZQoaAZHQEFv/pdKNAFoB0uRaAhHQLSTx2Xb/Ot1fZQoaAZHQHFF4TbnHNpoB0u0aAhHQLSUCyQgcLl1fZQoaAZHQHIaMD0UXYVoB0vDaAhHQLSUV+aScLB1fZQoaAZHQECKW+oLofVoB0t4aAhHQLSUzl8PWhB1fZQoaAZHQHGhGwzLwF1oB0vXaAhHQLSVIHU+cH51fZQoaAZHQHIjF0T101ZoB01AAWgIR0C0lZPapPykdX2UKGgGR0By/5yyUs4DaAdLuWgIR0C0ldfBrN4adX2UKGgGR0Bt5NlyzXz2aAdLpmgIR0C0lifvv0AcdX2UKGgGR0BzCeWSlnAZaAdL32gIR0C0lvKYzBRAdX2UKGgGR0BzI94W1twaaAdL5GgIR0C0l2ZK3/gjdX2UKGgGR0BwG6sMiKR/aAdLsmgIR0C0l8eBUaQ4dX2UKGgGR0ByIP4ZdfLLaAdLz2gIR0C0mDh4QjD9dX2UKGgGR0Bvi5esxO+JaAdLzmgIR0C0mKkj1PFedWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 10386, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.99, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.31 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v1.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d7d29a53914d82dfbed11fc967cbc3c00e60041c24cb67d5bac220e54d54d944
|
3 |
+
size 145955
|
ppo-LunarLander-v1/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v1/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7d657ea6d090>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d657ea6d120>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d657ea6d1b0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d657ea6d240>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7d657ea6d2d0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7d657ea6d360>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7d657ea6d3f0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d657ea6d480>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7d657ea6d510>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d657ea6d5a0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d657ea6d630>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7d657ea6d6c0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7d657ea71780>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 2558976,
|
25 |
+
"_total_timesteps": 10000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1689590231803160877,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAFqf9D29p0A+gwdMvjd19r7fI4E8YpwBvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": 0.7441024,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV4wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQDdOkLx7RfGMAWyUS32MAXSUR0C0dVTFdcB2dX2UKGgGR0Bvl2Hck+otaAdLs2gIR0C0dZZkf9xZdX2UKGgGR0BwSHQpnYg8aAdLqmgIR0C0ddLL+xW1dX2UKGgGR0BybqLjxTbWaAdLyWgIR0C0dmZA+pwTdX2UKGgGR0BzzqvaDf3waAdL72gIR0C0dr894eLfdX2UKGgGR0BxKPneSB9UaAdLyGgIR0C0dwhU70WedX2UKGgGR0BvXVKyv9tNaAdLsWgIR0C0d0efZmI1dX2UKGgGR0A/hYlY2bXpaAdLgGgIR0C0d3fJFLFodX2UKGgGR0Bwyb7pFCswaAdLsGgIR0C0eAFdkauPdX2UKGgGR0ByGDEFW4mUaAdLvGgIR0C0eEYdMj/udX2UKGgGR0ByFGOEM9bHaAdLxGgIR0C0eI3Ehq0udX2UKGgGR0Bxh3rNW2gGaAdLsGgIR0C0eM7mp2lmdX2UKGgGR0BwbnEYO2AoaAdLxGgIR0C0eRNZA6dUdX2UKGgGR0BxLaXZ5AyEaAdLs2gIR0C0eVMSkCV9dX2UKGgGR0BxvbeXRgJDaAdLrWgIR0C0edkmD15CdX2UKGgGR0BvRHxx1gYxaAdLrGgIR0C0ei5hz/6wdX2UKGgGR0BwmlXYDklvaAdLm2gIR0C0ennG0eEJdX2UKGgGR0Bw0F9w3o9taAdLtGgIR0C0es1PSDywdX2UKGgGR0Bxp1h3JPqLaAdLx2gIR0C0eyy5I6KcdX2UKGgGR0BvjlMAWBSUaAdLzmgIR0C0fAMRcu8LdX2UKGgGR0Bzhz4k/r0KaAdL2WgIR0C0fHn3QD3edX2UKGgGR0ByfNKXfIjoaAdL5mgIR0C0fPbFfiPydX2UKGgGR0By0+AhB7eEaAdLj2gIR0C0fUOpjtojdX2UKGgGR0By0Jz+3pfQaAdLzWgIR0C0fbRbOeJ6dX2UKGgGR0BwuBGx2SuAaAdLt2gIR0C0fgJBPbfxdX2UKGgGR0A8rtBv73wkaAdLg2gIR0C0fnpZntfHdX2UKGgGR0ByqfthNM4+aAdL9WgIR0C0fta814xDdX2UKGgGR0BxHa5WilBQaAdLymgIR0C0fx3mFJxvdX2UKGgGR0By8+yPdVNpaAdL9GgIR0C0f3Zng5zYdX2UKGgGR0BNf7Fjurp8aAdLbWgIR0C0f57q+rU9dX2UKGgGR0BwkZZ0Syt3aAdLx2gIR0C0gC3xBmf5dX2UKGgGR0BvWNFDv3JxaAdLxmgIR0C0gHcDbJwLdX2UKGgGR0ByXLAEdNnHaAdLxmgIR0C0gMH0K7ZndX2UKGgGR0BJb1EmY0EYaAdLcGgIR0C0gOuSB9ThdX2UKGgGR0Byw9o4+8oQaAdLyGgIR0C0gTSZOSGKdX2UKGgGR0Bw+dTcZccEaAdLqWgIR0C0gXJbt7a7dX2UKGgGR0A92VTaTOgQaAdLgmgIR0C0gem8274BdX2UKGgGR0BxiMZKnNxEaAdLwWgIR0C0gjMGxD9gdX2UKGgGR0BxPSE9Mbm2aAdLuWgIR0C0gniFj/dZdX2UKGgGR0BxaeHxjJ+2aAdLymgIR0C0gsrftQbddX2UKGgGR0BTDb7j1f3OaAdLd2gIR0C0gvaYeDFqdX2UKGgGR0BxvPFCLMs6aAdL3WgIR0C0g0ah6By0dX2UKGgGR0Bw6o7MgU1yaAdLsGgIR0C0g9AEU0vXdX2UKGgGR0BxMDWNFSbZaAdLsWgIR0C0hBF/lQuVdX2UKGgGR0Bx0fgl4TsZaAdLk2gIR0C0hEfJA+pwdX2UKGgGR0BLVU70WdmQaAdLfGgIR0C0hHRgeA/cdX2UKGgGR0A6kk7fYSQHaAdLTGgIR0C0hI/GZNO/dX2UKGgGR0Bzkk5ZKWcCaAdNPAFoCEdAtIUAYgq3E3V9lChoBkdAcZ7TWXkYGmgHS55oCEdAtIWAWCVbA3V9lChoBkdAc1bDMeOn22gHS+JoCEdAtIXV4xDb8HV9lChoBkdAbchH6MzdlGgHTWsBaAhHQLSGXzj3mFJ1fZQoaAZHQHIMkYfnwG5oB0vMaAhHQLSGrFocrAh1fZQoaAZHQHHoMbNr0rdoB0vwaAhHQLSHThJiAlR1fZQoaAZHQHBH/A44p+doB0uqaAhHQLSHi+0gKWt1fZQoaAZHQHEr5X2dupFoB0v8aAhHQLSH+v9tMwl1fZQoaAZHQEMJsguAZsNoB0tsaAhHQLSIMI3R5Tt1fZQoaAZHQDSMwaisXBRoB0t7aAhHQLSIbZkTYd11fZQoaAZHQHE1DbWVeKNoB0u7aAhHQLSIxJbt7a91fZQoaAZHQG+n1vVEuxtoB0vVaAhHQLSJnFhXr+p1fZQoaAZHQHFvgyEcsDpoB0u+aAhHQLSKA/axoqV1fZQoaAZHQElasI3R5TtoB0uVaAhHQLSKVI+4b0h1fZQoaAZHQHFq/HLidatoB0u5aAhHQLSKubWmP5p1fZQoaAZHQHGkWjbi6xxoB0viaAhHQLSLN8RL9Mt1fZQoaAZHQHB/cRDkU9JoB0vBaAhHQLSMAS00FbF1fZQoaAZHQG7Vo/zJ6ppoB0vRaAhHQLSMUOtW+491fZQoaAZHQHM+4cJdB0JoB0vjaAhHQLSMoumaYu11fZQoaAZHQHEYwo5PuXxoB0u6aAhHQLSM52zOX3R1fZQoaAZHQHE7EBfa6BloB0u9aAhHQLSNLQfp2U11fZQoaAZHQHIce5vtMPBoB0vxaAhHQLSNx41P3zt1fZQoaAZHQG+ATy8SPENoB0upaAhHQLSOCGA08/51fZQoaAZHQHFCGcOLBKtoB0viaAhHQLSOXSuyNXJ1fZQoaAZHQHCzq42CNCJoB0u4aAhHQLSOpEORT0h1fZQoaAZHQHJDeVLSNOxoB0vkaAhHQLSO/OG0u151fZQoaAZHQHGjiCOFQEZoB0ucaAhHQLSPfnE2pAF1fZQoaAZHQHJlA+UyHmBoB0vDaAhHQLSPxgpSaVl1fZQoaAZHQHIf/jjrAxloB0vTaAhHQLSQFAymALB1fZQoaAZHQHHVxaouPFNoB0u5aAhHQLSQWHpKSPl1fZQoaAZHQHC/osqaw2VoB0uzaAhHQLSQm38n/kx1fZQoaAZHQHJGQDaGpMpoB0vhaAhHQLSQ7jI7vG91fZQoaAZHQEt7q46Oo5xoB0t8aAhHQLSRaJYDDCR1fZQoaAZHQExhIBikO7RoB0t/aAhHQLSRlpxm03R1fZQoaAZHQHFnLQb+98JoB0vDaAhHQLSR3vxYq5N1fZQoaAZHQG+c8uJ1q35oB0u9aAhHQLSSKMnZ00Z1fZQoaAZHQHKITYZl4C9oB0vwaAhHQLSSf3DvVmV1fZQoaAZHQGzfK//NqxloB0umaAhHQLSTAEJjUd91fZQoaAZHQHB829xp+MJoB0u9aAhHQLSTRrC3w1B1fZQoaAZHQHJUXFPznRtoB0vLaAhHQLSTkayrxRV1fZQoaAZHQEFv/pdKNAFoB0uRaAhHQLSTx2Xb/Ot1fZQoaAZHQHFF4TbnHNpoB0u0aAhHQLSUCyQgcLl1fZQoaAZHQHIaMD0UXYVoB0vDaAhHQLSUV+aScLB1fZQoaAZHQECKW+oLofVoB0t4aAhHQLSUzl8PWhB1fZQoaAZHQHGhGwzLwF1oB0vXaAhHQLSVIHU+cH51fZQoaAZHQHIjF0T101ZoB01AAWgIR0C0lZPapPykdX2UKGgGR0By/5yyUs4DaAdLuWgIR0C0ldfBrN4adX2UKGgGR0Bt5NlyzXz2aAdLpmgIR0C0lifvv0AcdX2UKGgGR0BzCeWSlnAZaAdL32gIR0C0lvKYzBRAdX2UKGgGR0BzI94W1twaaAdL5GgIR0C0l2ZK3/gjdX2UKGgGR0BwG6sMiKR/aAdLsmgIR0C0l8eBUaQ4dX2UKGgGR0ByIP4ZdfLLaAdLz2gIR0C0mDh4QjD9dX2UKGgGR0Bvi5esxO+JaAdLzmgIR0C0mKkj1PFedWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 10386,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 1,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v1/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:71074ae91ba673909c8d33b7a737c4712976961ce7cce38826d3dac989e4f707
|
3 |
+
size 87929
|
ppo-LunarLander-v1/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a42fec4f20caf13f29231d8eb12615844685b75ff603385bbe325e25767c1830
|
3 |
+
size 43329
|
ppo-LunarLander-v1/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v1/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.31 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (137 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 268.4903407, "std_reward": 14.09492895771705, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-17T12:03:52.675779"}
|