uvr / MDX23v24 /inference.py
gosummer's picture
Upload 2 files
b9fd956 verified
raw
history blame
42.3 kB
# coding: utf-8
if __name__ == '__main__':
import os
gpu_use = "0"
print('GPU use: {}'.format(gpu_use))
os.environ["CUDA_VISIBLE_DEVICES"] = "{}".format(gpu_use)
import warnings
warnings.filterwarnings("ignore")
from tqdm import tqdm
import numpy as np
import torch
import torch.nn as nn
import os
import argparse
import soundfile as sf
from demucs.states import load_model
from demucs import pretrained
from demucs.apply import apply_model
import onnxruntime as ort
from time import time
import librosa
import hashlib
from scipy import signal
import gc
import yaml
from ml_collections import ConfigDict
import sys
import math
import pathlib
import warnings
from scipy.signal import resample_poly
from modules.tfc_tdf_v2 import Conv_TDF_net_trim_model
from modules.tfc_tdf_v3 import TFC_TDF_net, STFT
from modules.segm_models import Segm_Models_Net
from modules.bs_roformer import BSRoformer
def get_models(name, device, load=True, vocals_model_type=0):
if vocals_model_type == 2:
model_vocals = Conv_TDF_net_trim_model(
device=device,
target_name='vocals',
L=11,
n_fft=7680,
dim_f=3072
)
elif vocals_model_type == 3:
model_vocals = Conv_TDF_net_trim_model(
device=device,
target_name='instrum',
L=11,
n_fft=5120,
dim_f=2560
)
return [model_vocals]
def get_model_from_config(model_type, config_path):
with open(config_path) as f:
config = ConfigDict(yaml.load(f, Loader=yaml.FullLoader))
if model_type == 'mdx23c':
from modules.tfc_tdf_v3 import TFC_TDF_net
model = TFC_TDF_net(config)
elif model_type == 'segm_models':
from modules.segm_models import Segm_Models_Net
model = Segm_Models_Net(config)
elif model_type == 'bs_roformer':
from modules.bs_roformer import BSRoformer
model = BSRoformer(
**dict(config.model)
)
else:
print('Unknown model: {}'.format(model_type))
model = None
return model, config
def demix_new(model, mix, device, config, dim_t=256):
mix = torch.tensor(mix)
#N = options["overlap_BSRoformer"]
N = 2 # overlap 50%
batch_size = 1
mdx_window_size = dim_t
C = config.audio.hop_length * (mdx_window_size - 1)
fade_size = C // 100
step = int(C // N)
border = C - step
length_init = mix.shape[-1]
#print(f"1: {mix.shape}")
# Do pad from the beginning and end to account floating window results better
if length_init > 2 * border and (border > 0):
mix = nn.functional.pad(mix, (border, border), mode='reflect')
# Prepare windows arrays (do 1 time for speed up). This trick repairs click problems on the edges of segment
window_size = C
fadein = torch.linspace(0, 1, fade_size)
fadeout = torch.linspace(1, 0, fade_size)
window_start = torch.ones(window_size)
window_middle = torch.ones(window_size)
window_finish = torch.ones(window_size)
window_start[-fade_size:] *= fadeout # First audio chunk, no fadein
window_finish[:fade_size] *= fadein # Last audio chunk, no fadeout
window_middle[-fade_size:] *= fadeout
window_middle[:fade_size] *= fadein
with torch.cuda.amp.autocast():
with torch.inference_mode():
if config.training.target_instrument is not None:
req_shape = (1, ) + tuple(mix.shape)
else:
req_shape = (len(config.training.instruments),) + tuple(mix.shape)
result = torch.zeros(req_shape, dtype=torch.float32)
counter = torch.zeros(req_shape, dtype=torch.float32)
i = 0
batch_data = []
batch_locations = []
while i < mix.shape[1]:
# print(i, i + C, mix.shape[1])
part = mix[:, i:i + C].to(device)
length = part.shape[-1]
if length < C:
if length > C // 2 + 1:
part = nn.functional.pad(input=part, pad=(0, C - length), mode='reflect')
else:
part = nn.functional.pad(input=part, pad=(0, C - length, 0, 0), mode='constant', value=0)
batch_data.append(part)
batch_locations.append((i, length))
i += step
if len(batch_data) >= batch_size or (i >= mix.shape[1]):
arr = torch.stack(batch_data, dim=0)
x = model(arr)
window = window_middle
if i - step == 0: # First audio chunk, no fadein
window = window_start
elif i >= mix.shape[1]: # Last audio chunk, no fadeout
window = window_finish
for j in range(len(batch_locations)):
start, l = batch_locations[j]
result[..., start:start+l] += x[j][..., :l].cpu() * window[..., :l]
counter[..., start:start+l] += window[..., :l]
batch_data = []
batch_locations = []
estimated_sources = result / counter
estimated_sources = estimated_sources.cpu().numpy()
np.nan_to_num(estimated_sources, copy=False, nan=0.0)
if length_init > 2 * border and (border > 0):
# Remove pad
estimated_sources = estimated_sources[..., border:-border]
if config.training.target_instrument is None:
return {k: v for k, v in zip(config.training.instruments, estimated_sources)}
else:
return {k: v for k, v in zip([config.training.target_instrument], estimated_sources)}
def demix_new_wrapper(mix, device, model, config, dim_t=256):
if options["BigShifts"] <= 0:
bigshifts = 1
else:
bigshifts = options["BigShifts"]
shift_in_samples = mix.shape[1] // bigshifts
shifts = [x * shift_in_samples for x in range(bigshifts)]
results = []
for shift in tqdm(shifts, position=0):
shifted_mix = np.concatenate((mix[:, -shift:], mix[:, :-shift]), axis=-1)
sources = demix_new(model, shifted_mix, device, config, dim_t=dim_t)
vocals = next(sources[key] for key in sources.keys() if key.lower() == "vocals")
unshifted_vocals = np.concatenate((vocals[..., shift:], vocals[..., :shift]), axis=-1)
vocals *= 1 # 1.0005168 CHECK NEEDED! volume compensation
results.append(unshifted_vocals)
vocals = np.mean(results, axis=0)
return vocals
def demix_vitlarge(model, mix, device):
C = model.config.audio.hop_length * (2 * model.config.inference.dim_t - 1)
N = 2
step = C // N
with torch.cuda.amp.autocast():
with torch.no_grad():
if model.config.training.target_instrument is not None:
req_shape = (1, ) + tuple(mix.shape)
else:
req_shape = (len(model.config.training.instruments),) + tuple(mix.shape)
mix = mix.to(device)
result = torch.zeros(req_shape, dtype=torch.float32).to(device)
counter = torch.zeros(req_shape, dtype=torch.float32).to(device)
i = 0
while i < mix.shape[1]:
part = mix[:, i:i + C]
length = part.shape[-1]
if length < C:
part = nn.functional.pad(input=part, pad=(0, C - length, 0, 0), mode='constant', value=0)
x = model(part.unsqueeze(0))[0]
result[..., i:i+length] += x[..., :length]
counter[..., i:i+length] += 1.
i += step
estimated_sources = result / counter
if model.config.training.target_instrument is None:
return {k: v for k, v in zip(model.config.training.instruments, estimated_sources.cpu().numpy())}
else:
return {k: v for k, v in zip([model.config.training.target_instrument], estimated_sources.cpu().numpy())}
def demix_full_vitlarge(mix, device, model):
if options["BigShifts"] <= 0:
bigshifts = 1
else:
bigshifts = options["BigShifts"]
shift_in_samples = mix.shape[1] // bigshifts
shifts = [x * shift_in_samples for x in range(bigshifts)]
results1 = []
results2 = []
mix = torch.from_numpy(mix).type('torch.FloatTensor').to(device)
for shift in tqdm(shifts, position=0):
shifted_mix = torch.cat((mix[:, -shift:], mix[:, :-shift]), dim=-1)
sources = demix_vitlarge(model, shifted_mix, device)
sources1 = sources["vocals"]
sources2 = sources["other"]
restored_sources1 = np.concatenate((sources1[..., shift:], sources1[..., :shift]), axis=-1)
restored_sources2 = np.concatenate((sources2[..., shift:], sources2[..., :shift]), axis=-1)
results1.append(restored_sources1)
results2.append(restored_sources2)
sources1 = np.mean(results1, axis=0)
sources2 = np.mean(results2, axis=0)
return sources1, sources2
def demix_wrapper(mix, device, models, infer_session, overlap=0.2, bigshifts=1, vc=1.0):
if bigshifts <= 0:
bigshifts = 1
shift_in_samples = mix.shape[1] // bigshifts
shifts = [x * shift_in_samples for x in range(bigshifts)]
results = []
for shift in tqdm(shifts, position=0):
shifted_mix = np.concatenate((mix[:, -shift:], mix[:, :-shift]), axis=-1)
sources = demix(shifted_mix, device, models, infer_session, overlap) * vc # 1.021 volume compensation
restored_sources = np.concatenate((sources[..., shift:], sources[..., :shift]), axis=-1)
results.append(restored_sources)
sources = np.mean(results, axis=0)
return sources
def demix(mix, device, models, infer_session, overlap=0.2):
start_time = time()
sources = []
n_sample = mix.shape[1]
n_fft = models[0].n_fft
n_bins = n_fft//2+1
trim = n_fft//2
hop = models[0].hop
dim_f = models[0].dim_f
dim_t = models[0].dim_t # * 2
chunk_size = hop * (dim_t -1)
org_mix = mix
tar_waves_ = []
mdx_batch_size = 1
overlap = overlap
gen_size = chunk_size-2*trim
pad = gen_size + trim - ((mix.shape[-1]) % gen_size)
mixture = np.concatenate((np.zeros((2, trim), dtype='float32'), mix, np.zeros((2, pad), dtype='float32')), 1)
step = int((1 - overlap) * chunk_size)
result = np.zeros((1, 2, mixture.shape[-1]), dtype=np.float32)
divider = np.zeros((1, 2, mixture.shape[-1]), dtype=np.float32)
total = 0
total_chunks = (mixture.shape[-1] + step - 1) // step
for i in range(0, mixture.shape[-1], step):
total += 1
start = i
end = min(i + chunk_size, mixture.shape[-1])
chunk_size_actual = end - start
if overlap == 0:
window = None
else:
window = np.hanning(chunk_size_actual)
window = np.tile(window[None, None, :], (1, 2, 1))
mix_part_ = mixture[:, start:end]
if end != i + chunk_size:
pad_size = (i + chunk_size) - end
mix_part_ = np.concatenate((mix_part_, np.zeros((2, pad_size), dtype='float32')), axis=-1)
mix_part = torch.tensor([mix_part_], dtype=torch.float32).to(device)
mix_waves = mix_part.split(mdx_batch_size)
with torch.no_grad():
for mix_wave in mix_waves:
_ort = infer_session
stft_res = models[0].stft(mix_wave)
stft_res[:, :, :3, :] *= 0
res = _ort.run(None, {'input': stft_res.cpu().numpy()})[0]
ten = torch.tensor(res)
tar_waves = models[0].istft(ten.to(device))
tar_waves = tar_waves.cpu().detach().numpy()
if window is not None:
tar_waves[..., :chunk_size_actual] *= window
divider[..., start:end] += window
else:
divider[..., start:end] += 1
result[..., start:end] += tar_waves[..., :end-start]
tar_waves = result / divider
tar_waves_.append(tar_waves)
tar_waves_ = np.vstack(tar_waves_)[:, :, trim:-trim]
tar_waves = np.concatenate(tar_waves_, axis=-1)[:, :mix.shape[-1]]
source = tar_waves[:,0:None]
return source
class EnsembleDemucsMDXMusicSeparationModel:
"""
Doesn't do any separation just passes the input back as output
"""
def __init__(self, options):
"""
options - user options
"""
if torch.cuda.is_available():
device = 'cuda:0'
else:
device = 'cpu'
if 'cpu' in options:
if options['cpu']:
device = 'cpu'
# print('Use device: {}'.format(device))
self.single_onnx = False
if 'single_onnx' in options:
if options['single_onnx']:
self.single_onnx = True
# print('Use single vocal ONNX')
self.overlap_demucs = float(options['overlap_demucs'])
self.overlap_MDX = float(options['overlap_VOCFT'])
if self.overlap_demucs > 0.99:
self.overlap_demucs = 0.99
if self.overlap_demucs < 0.0:
self.overlap_demucs = 0.0
if self.overlap_MDX > 0.99:
self.overlap_MDX = 0.99
if self.overlap_MDX < 0.0:
self.overlap_MDX = 0.0
model_folder = os.path.dirname(os.path.realpath(__file__)) + '/models/'
"""
remote_url = 'https://dl.fbaipublicfiles.com/demucs/hybrid_transformer/04573f0d-f3cf25b2.th'
model_path = model_folder + '04573f0d-f3cf25b2.th'
if not os.path.isfile(model_path):
torch.hub.download_url_to_file(remote_url, model_folder + '04573f0d-f3cf25b2.th')
model_vocals = load_model(model_path)
model_vocals.to(device)
self.model_vocals_only = model_vocals
"""
if options['vocals_only'] is False:
self.models = []
self.weights_vocals = np.array([10, 1, 8, 9])
self.weights_bass = np.array([19, 4, 5, 8])
self.weights_drums = np.array([18, 2, 4, 9])
self.weights_other = np.array([14, 2, 5, 10])
model1 = pretrained.get_model('htdemucs_ft')
model1.to(device)
self.models.append(model1)
model2 = pretrained.get_model('htdemucs')
model2.to(device)
self.models.append(model2)
model3 = pretrained.get_model('htdemucs_6s')
model3.to(device)
self.models.append(model3)
model4 = pretrained.get_model('hdemucs_mmi')
model4.to(device)
self.models.append(model4)
if 0:
for model in self.models:
pass
# print(model.sources)
'''
['drums', 'bass', 'other', 'vocals']
['drums', 'bass', 'other', 'vocals']
['drums', 'bass', 'other', 'vocals', 'guitar', 'piano']
['drums', 'bass', 'other', 'vocals']
'''
"""
#BS-RoformerDRUMS+BASS init
print("Loading BS-RoformerDB into memory")
remote_url_bsrofoDB = 'https://github.com/TRvlvr/model_repo/releases/download/all_public_uvr_models/model_bs_roformer_ep_937_sdr_10.5309.ckpt'
remote_url_conf_bsrofoDB = 'https://raw.githubusercontent.com/TRvlvr/application_data/main/mdx_model_data/mdx_c_configs/model_bs_roformer_ep_937_sdr_10.5309.yaml'
if not os.path.isfile(model_folder+'model_bs_roformer_ep_937_sdr_10.5309.ckpt'):
torch.hub.download_url_to_file(remote_url_bsrofoDB, model_folder+'model_bs_roformer_ep_937_sdr_10.5309.ckpt')
if not os.path.isfile(model_folder+'model_bs_roformer_ep_937_sdr_10.5309.yaml'):
torch.hub.download_url_to_file(remote_url_conf_bsrofoDB, model_folder+'model_bs_roformer_ep_937_sdr_10.5309.yaml')
with open(model_folder + 'model_bs_roformer_ep_937_sdr_10.5309.yaml') as f:
config_bsrofoDB = ConfigDict(yaml.load(f, Loader=yaml.FullLoader))
self.model_bsrofoDB = BSRoformer(**dict(config_bsrofoDB.model))
self.config_bsrofoDB = config_bsrofoDB
self.model_bsrofoDB.load_state_dict(torch.load(model_folder+'model_bs_roformer_ep_937_sdr_10.5309.ckpt'))
self.device = torch.device(device)
self.model_bsrofoDB = self.model_bsrofoDB.to(device)
self.model_bsrofoDB.eval()
"""
if device == 'cpu':
providers = ["CPUExecutionProvider"]
else:
providers = ["CUDAExecutionProvider"]
#BS-RoformerVOC init
print("Loading BS-Roformer into memory")
if options["BSRoformer_model"] == "ep_368_1296":
model_name = "model_bs_roformer_ep_368_sdr_12.9628"
else:
model_name = "model_bs_roformer_ep_317_sdr_12.9755"
remote_url_bsrofo = f'https://github.com/TRvlvr/model_repo/releases/download/all_public_uvr_models/{model_name}.ckpt'
remote_url_conf_bsrofo = f'https://raw.githubusercontent.com/TRvlvr/application_data/main/mdx_model_data/mdx_c_configs/{model_name}.yaml'
if not os.path.isfile(model_folder+f'{model_name}.ckpt'):
torch.hub.download_url_to_file(remote_url_bsrofo, model_folder+f'{model_name}.ckpt')
if not os.path.isfile(model_folder+f'{model_name}.yaml'):
torch.hub.download_url_to_file(remote_url_conf_bsrofo, model_folder+f'{model_name}.yaml')
with open(model_folder + f'{model_name}.yaml') as f:
config_bsrofo = ConfigDict(yaml.load(f, Loader=yaml.FullLoader))
self.model_bsrofo = BSRoformer(**dict(config_bsrofo.model))
self.config_bsrofo = config_bsrofo
self.model_bsrofo.load_state_dict(torch.load(model_folder+f'{model_name}.ckpt'))
self.device = torch.device(device)
self.model_bsrofo = self.model_bsrofo.to(device)
self.model_bsrofo.eval()
#MDXv3 init
print("Loading InstVoc into memory")
remote_url_mdxv3 = 'https://github.com/TRvlvr/model_repo/releases/download/all_public_uvr_models/MDX23C-8KFFT-InstVoc_HQ.ckpt'
remote_url_conf_mdxv3 = 'https://raw.githubusercontent.com/TRvlvr/application_data/main/mdx_model_data/mdx_c_configs/model_2_stem_full_band_8k.yaml'
if not os.path.isfile(model_folder+'MDX23C-8KFFT-InstVoc_HQ.ckpt'):
torch.hub.download_url_to_file(remote_url_mdxv3, model_folder+'MDX23C-8KFFT-InstVoc_HQ.ckpt')
if not os.path.isfile(model_folder+'model_2_stem_full_band_8k.yaml'):
torch.hub.download_url_to_file(remote_url_conf_mdxv3, model_folder+'model_2_stem_full_band_8k.yaml')
with open(model_folder + 'model_2_stem_full_band_8k.yaml') as f:
config_mdxv3 = ConfigDict(yaml.load(f, Loader=yaml.FullLoader))
self.config_mdxv3 = config_mdxv3
self.model_mdxv3 = TFC_TDF_net(config_mdxv3)
self.model_mdxv3.load_state_dict(torch.load(model_folder+'MDX23C-8KFFT-InstVoc_HQ.ckpt'))
self.device = torch.device(device)
self.model_mdxv3 = self.model_mdxv3.to(device)
self.model_mdxv3.eval()
#VitLarge init
if options['use_VitLarge'] is True:
print("Loading VitLarge into memory")
remote_url_vitlarge = 'https://github.com/ZFTurbo/Music-Source-Separation-Training/releases/download/v1.0.0/model_vocals_segm_models_sdr_9.77.ckpt'
remote_url_vl_conf = 'https://github.com/ZFTurbo/Music-Source-Separation-Training/releases/download/v1.0.0/config_vocals_segm_models.yaml'
if not os.path.isfile(model_folder+'model_vocals_segm_models_sdr_9.77.ckpt'):
torch.hub.download_url_to_file(remote_url_vitlarge, model_folder+'model_vocals_segm_models_sdr_9.77.ckpt')
if not os.path.isfile(model_folder+'config_vocals_segm_models.yaml'):
torch.hub.download_url_to_file(remote_url_vl_conf, model_folder+'config_vocals_segm_models.yaml')
with open(model_folder + 'config_vocals_segm_models.yaml') as f:
config_vl = ConfigDict(yaml.load(f, Loader=yaml.FullLoader))
self.config_vl = config_vl
self.model_vl = Segm_Models_Net(config_vl)
self.model_vl.load_state_dict(torch.load(model_folder+'model_vocals_segm_models_sdr_9.77.ckpt'))
self.device = torch.device(device)
self.model_vl = self.model_vl.to(device)
self.model_vl.eval()
# VOCFT init
if options['use_VOCFT']:
print("Loading VOCFT into memory")
self.mdx_models1 = get_models('tdf_extra', load=False, device=device, vocals_model_type=2)
model_path_onnx1 = model_folder + 'UVR-MDX-NET-Voc_FT.onnx'
remote_url_onnx1 = 'https://github.com/TRvlvr/model_repo/releases/download/all_public_uvr_models/UVR-MDX-NET-Voc_FT.onnx'
if not os.path.isfile(model_path_onnx1):
torch.hub.download_url_to_file(remote_url_onnx1, model_path_onnx1)
self.infer_session1 = ort.InferenceSession(
model_path_onnx1,
providers=providers,
provider_options=[{"device_id": 0}],
)
# InstHQ4 init
if options['use_InstHQ4']:
print("Loading InstHQ4 into memory")
self.mdx_models2 = get_models('tdf_extra', load=False, device=device, vocals_model_type=3)
model_path_onnx2 = model_folder + 'UVR-MDX-NET-Inst_HQ_4.onnx'
remote_url_onnx2 = 'https://github.com/TRvlvr/model_repo/releases/download/all_public_uvr_models/UVR-MDX-NET-Inst_HQ_4.onnx'
if not os.path.isfile(model_path_onnx2):
torch.hub.download_url_to_file(remote_url_onnx2, model_path_onnx2)
self.infer_session2 = ort.InferenceSession(
model_path_onnx2,
providers=providers,
provider_options=[{"device_id": 0}],
)
self.device = device
pass
@property
def instruments(self):
if options['vocals_only'] is False:
return ['bass', 'drums', 'other', 'vocals']
else:
return ['vocals']
def raise_aicrowd_error(self, msg):
""" Will be used by the evaluator to provide logs, DO NOT CHANGE """
raise NameError(msg)
def separate_music_file(
self,
mixed_sound_array,
sample_rate,
current_file_number=0,
total_files=0,
):
"""
Implements the sound separation for a single sound file
Inputs: Outputs from soundfile.read('mixture.wav')
mixed_sound_array
sample_rate
Outputs:
separated_music_arrays: Dictionary numpy array of each separated instrument
output_sample_rates: Dictionary of sample rates separated sequence
"""
# print('Update percent func: {}'.format(update_percent_func))
separated_music_arrays = {}
output_sample_rates = {}
#print(mixed_sound_array.T.shape)
#audio = np.expand_dims(mixed_sound_array.T, axis=0)
overlap_demucs = self.overlap_demucs
overlap_MDX = self.overlap_MDX
shifts = 0
overlap = overlap_demucs
vocals_model_names = [
"BSRoformer",
"InstVoc",
"VitLarge",
"VOCFT",
"InstHQ4"
]
vocals_model_outputs = []
weights = []
for model_name in vocals_model_names:
if options[f"use_{model_name}"]:
if model_name == "BSRoformer":
print(f'Processing vocals with {model_name} model...')
sources_bs = demix_new_wrapper(mixed_sound_array.T, self.device, self.model_bsrofo, self.config_bsrofo, dim_t=1101)
vocals_bs = match_array_shapes(sources_bs, mixed_sound_array.T)
vocals_model_outputs.append(vocals_bs)
weights.append(options.get(f"weight_{model_name}"))
if model_name == "InstVoc":
print(f'Processing vocals with {model_name} model...')
sources3 = demix_new_wrapper(mixed_sound_array.T, self.device, self.model_mdxv3, self.config_mdxv3, dim_t=1024)
vocals3 = match_array_shapes(sources3, mixed_sound_array.T)
vocals_model_outputs.append(vocals3)
weights.append(options.get(f"weight_{model_name}"))
elif model_name == "VitLarge":
print(f'Processing vocals with {model_name} model...')
vocals4, instrum4 = demix_full_vitlarge(mixed_sound_array.T, self.device, self.model_vl)#, self.config_vl, dim_t=512)
vocals4 = match_array_shapes(vocals4, mixed_sound_array.T)
vocals_model_outputs.append(vocals4)
weights.append(options.get(f"weight_{model_name}"))
elif model_name == "VOCFT":
print(f'Processing vocals with {model_name} model...')
overlap = overlap_MDX
sources1 = 0.5 * demix_wrapper(
mixed_sound_array.T,
self.device,
self.mdx_models1,
self.infer_session1,
overlap=overlap,
vc=1.021,
bigshifts=options['BigShifts'] // 3
)
sources1 += 0.5 * -demix_wrapper(
-mixed_sound_array.T,
self.device,
self.mdx_models1,
self.infer_session1,
overlap=overlap,
vc=1.021,
bigshifts=options['BigShifts'] // 3
)
vocals_mdxb1 = sources1
vocals_model_outputs.append(vocals_mdxb1)
weights.append(options.get(f"weight_{model_name}"))
elif model_name == "InstHQ4":
print(f'Processing vocals with {model_name} model...')
overlap = overlap_MDX
sources2 = 0.5 * demix_wrapper(
mixed_sound_array.T,
self.device,
self.mdx_models2,
self.infer_session2,
overlap=overlap,
vc=1.019,
bigshifts=options['BigShifts'] // 3
)
sources2 += 0.5 * -demix_wrapper(
-mixed_sound_array.T,
self.device,
self.mdx_models2,
self.infer_session2,
overlap=overlap,
vc=1.019,
bigshifts=options['BigShifts'] // 3
)
vocals_mdxb2 = mixed_sound_array.T - sources2
vocals_model_outputs.append(vocals_mdxb2)
weights.append(options.get(f"weight_{model_name}"))
else:
# No more model to process or unknown one
pass
print('Processing vocals: DONE!')
vocals_combined = np.zeros_like(vocals_model_outputs[0])
for output, weight in zip(vocals_model_outputs, weights):
vocals_combined += output * weight
vocals_combined /= np.sum(weights)
vocals_low = lr_filter(vocals_combined.T, 12000, 'lowpass') # * 1.01055 # remember to check if new final finetuned volume compensation is needed !
vocals_high = lr_filter(vocals3.T, 12000, 'highpass')
vocals = vocals_low + vocals_high
#vocals = vocals_combined.T
if options['filter_vocals'] is True:
vocals = lr_filter(vocals, 50, 'highpass', order=8)
# Generate instrumental
instrum = mixed_sound_array - vocals
if options['vocals_only'] is False:
"""
print(f'Processing drums & bass with 2nd BS-Roformer model...')
other_bs2 = demix_full_bsrofo(instrum.T, self.device, self.model_bsrofoDB, self.config_bsrofoDB)
other_bs2 = match_array_shapes(other_bs2, mixed_sound_array.T)
drums_bass_bs2 = mixed_sound_array.T - other_bs2
print('Starting Demucs processing...')
drums_bass_bs2 = np.expand_dims(drums_bass_bs2.T, axis=0)
drums_bass_bs2 = torch.from_numpy(drums_bass_bs2).type('torch.FloatTensor').to(self.device)
"""
audio = np.expand_dims(instrum.T, axis=0)
audio = torch.from_numpy(audio).type('torch.FloatTensor').to(self.device)
all_outs = []
print('Processing with htdemucs_ft...')
i = 0
overlap = overlap_demucs
model = pretrained.get_model('htdemucs_ft')
model.to(self.device)
out = 0.5 * apply_model(model, audio, shifts=shifts, overlap=overlap)[0].cpu().numpy() \
+ 0.5 * -apply_model(model, -audio, shifts=shifts, overlap=overlap)[0].cpu().numpy()
out[0] = self.weights_drums[i] * out[0]
out[1] = self.weights_bass[i] * out[1]
out[2] = self.weights_other[i] * out[2]
out[3] = self.weights_vocals[i] * out[3]
all_outs.append(out)
model = model.cpu()
del model
gc.collect()
i = 1
print('Processing with htdemucs...')
overlap = overlap_demucs
model = pretrained.get_model('htdemucs')
model.to(self.device)
out = 0.5 * apply_model(model, audio, shifts=shifts, overlap=overlap)[0].cpu().numpy() \
+ 0.5 * -apply_model(model, -audio, shifts=shifts, overlap=overlap)[0].cpu().numpy()
out[0] = self.weights_drums[i] * out[0]
out[1] = self.weights_bass[i] * out[1]
out[2] = self.weights_other[i] * out[2]
out[3] = self.weights_vocals[i] * out[3]
all_outs.append(out)
model = model.cpu()
del model
gc.collect()
i = 2
print('Processing with htdemucs_6s...')
overlap = overlap_demucs
model = pretrained.get_model('htdemucs_6s')
model.to(self.device)
out = apply_model(model, audio, shifts=shifts, overlap=overlap)[0].cpu().numpy()
# More stems need to add
out[2] = out[2] + out[4] + out[5]
out = out[:4]
out[0] = self.weights_drums[i] * out[0]
out[1] = self.weights_bass[i] * out[1]
out[2] = self.weights_other[i] * out[2]
out[3] = self.weights_vocals[i] * out[3]
all_outs.append(out)
model = model.cpu()
del model
gc.collect()
i = 3
print('Processing with htdemucs_mmi...')
model = pretrained.get_model('hdemucs_mmi')
model.to(self.device)
out = 0.5 * apply_model(model, audio, shifts=shifts, overlap=overlap)[0].cpu().numpy() \
+ 0.5 * -apply_model(model, -audio, shifts=shifts, overlap=overlap)[0].cpu().numpy()
out[0] = self.weights_drums[i] * out[0]
out[1] = self.weights_bass[i] * out[1]
out[2] = self.weights_other[i] * out[2]
out[3] = self.weights_vocals[i] * out[3]
all_outs.append(out)
model = model.cpu()
del model
gc.collect()
out = np.array(all_outs).sum(axis=0)
out[0] = out[0] / self.weights_drums.sum()
out[1] = out[1] / self.weights_bass.sum()
out[2] = out[2] / self.weights_other.sum()
out[3] = out[3] / self.weights_vocals.sum()
# other
res = mixed_sound_array - vocals - out[0].T - out[1].T
res = np.clip(res, -1, 1)
separated_music_arrays['other'] = (2 * res + out[2].T) / 3.0
output_sample_rates['other'] = sample_rate
# drums
res = mixed_sound_array - vocals - out[1].T - out[2].T
res = np.clip(res, -1, 1)
separated_music_arrays['drums'] = (res + 2 * out[0].T.copy()) / 3.0
output_sample_rates['drums'] = sample_rate
# bass
res = mixed_sound_array - vocals - out[0].T - out[2].T
res = np.clip(res, -1, 1)
separated_music_arrays['bass'] = (res + 2 * out[1].T) / 3.0
output_sample_rates['bass'] = sample_rate
bass = separated_music_arrays['bass']
drums = separated_music_arrays['drums']
other = separated_music_arrays['other']
separated_music_arrays['other'] = mixed_sound_array - vocals - bass - drums
separated_music_arrays['drums'] = mixed_sound_array - vocals - bass - other
separated_music_arrays['bass'] = mixed_sound_array - vocals - drums - other
# vocals
separated_music_arrays['vocals'] = vocals
output_sample_rates['vocals'] = sample_rate
# instrum
separated_music_arrays['instrum'] = instrum
return separated_music_arrays, output_sample_rates
def predict_with_model(options):
output_format = options['output_format']
output_extension = 'flac' if output_format == 'FLAC' else "wav"
output_format = 'PCM_16' if output_format == 'FLAC' else options['output_format']
for input_audio in options['input_audio']:
if not os.path.isfile(input_audio):
print('Error. No such file: {}. Please check path!'.format(input_audio))
return
output_folder = options['output_folder']
if not os.path.isdir(output_folder):
os.mkdir(output_folder)
model = None
model = EnsembleDemucsMDXMusicSeparationModel(options)
for i, input_audio in enumerate(options['input_audio']):
print('Go for: {}'.format(input_audio))
audio, sr = librosa.load(input_audio, mono=False, sr=44100)
if len(audio.shape) == 1:
audio = np.stack([audio, audio], axis=0)
if options['input_gain'] != 0:
audio = dBgain(audio, options['input_gain'])
print("Input audio: {} Sample rate: {}".format(audio.shape, sr))
result, sample_rates = model.separate_music_file(audio.T, sr, i, len(options['input_audio']))
for instrum in model.instruments:
output_name = os.path.splitext(os.path.basename(input_audio))[0] + '_{}.{}'.format(instrum, output_extension)
if options["restore_gain"] is True: #restoring original gain
result[instrum] = dBgain(result[instrum], -options['input_gain'])
sf.write(output_folder + '/' + output_name, result[instrum], sample_rates[instrum], subtype=output_format)
print('File created: {}'.format(output_folder + '/' + output_name))
# instrumental part 1
# inst = (audio.T - result['vocals'])
inst = result['instrum']
if options["restore_gain"] is True: #restoring original gain
inst = dBgain(inst, -options['input_gain'])
output_name = os.path.splitext(os.path.basename(input_audio))[0] + '_{}.{}'.format('instrum', output_extension)
sf.write(output_folder + '/' + output_name, inst, sr, subtype=output_format)
print('File created: {}'.format(output_folder + '/' + output_name))
if options['vocals_only'] is False:
# instrumental part 2
inst2 = (result['bass'] + result['drums'] + result['other'])
output_name = os.path.splitext(os.path.basename(input_audio))[0] + '_{}.{}'.format('instrum2', output_extension)
sf.write(output_folder + '/' + output_name, inst2, sr, subtype=output_format)
print('File created: {}'.format(output_folder + '/' + output_name))
# Linkwitz-Riley filter
def lr_filter(audio, cutoff, filter_type, order=6, sr=44100):
audio = audio.T
nyquist = 0.5 * sr
normal_cutoff = cutoff / nyquist
b, a = signal.butter(order//2, normal_cutoff, btype=filter_type, analog=False)
sos = signal.tf2sos(b, a)
filtered_audio = signal.sosfiltfilt(sos, audio)
return filtered_audio.T
def match_array_shapes(array_1:np.ndarray, array_2:np.ndarray):
if array_1.shape[1] > array_2.shape[1]:
array_1 = array_1[:,:array_2.shape[1]]
elif array_1.shape[1] < array_2.shape[1]:
padding = array_2.shape[1] - array_1.shape[1]
array_1 = np.pad(array_1, ((0,0), (0,padding)), 'constant', constant_values=0)
return array_1
def dBgain(audio, volume_gain_dB):
attenuation = 10 ** (volume_gain_dB / 20)
gained_audio = audio * attenuation
return gained_audio
if __name__ == '__main__':
start_time = time()
print("started!\n")
m = argparse.ArgumentParser()
m.add_argument("--input_audio", "-i", nargs='+', type=str, help="Input audio location. You can provide multiple files at once", required=True)
m.add_argument("--output_folder", "-r", type=str, help="Output audio folder", required=True)
m.add_argument("--large_gpu", action='store_true', help="It will store all models on GPU for faster processing of multiple audio files. Requires 11 and more GB of free GPU memory.")
m.add_argument("--single_onnx", action='store_true', help="Only use single ONNX model for vocals. Can be useful if you have not enough GPU memory.")
m.add_argument("--cpu", action='store_true', help="Choose CPU instead of GPU for processing. Can be very slow.")
m.add_argument("--overlap_demucs", type=float, help="Overlap of splited audio for light models. Closer to 1.0 - slower", required=False, default=0.1)
m.add_argument("--overlap_VOCFT", type=float, help="Overlap of splited audio for heavy models. Closer to 1.0 - slower", required=False, default=0.1)
m.add_argument("--overlap_InstHQ4", type=float, help="Overlap of splited audio for heavy models. Closer to 1.0 - slower", required=False, default=0.1)
m.add_argument("--overlap_VitLarge", type=int, help="Overlap of splited audio for heavy models. Closer to 1.0 - slower", required=False, default=1)
m.add_argument("--overlap_InstVoc", type=int, help="MDXv3 overlap", required=False, default=2)
m.add_argument("--overlap_BSRoformer", type=int, help="BSRoformer overlap", required=False, default=2)
m.add_argument("--weight_InstVoc", type=float, help="Weight of MDXv3 model", required=False, default=4)
m.add_argument("--weight_VOCFT", type=float, help="Weight of VOC-FT model", required=False, default=1)
m.add_argument("--weight_InstHQ4", type=float, help="Weight of instHQ4 model", required=False, default=1)
m.add_argument("--weight_VitLarge", type=float, help="Weight of VitLarge model", required=False, default=1)
m.add_argument("--weight_BSRoformer", type=float, help="Weight of BS-Roformer model", required=False, default=10)
m.add_argument("--BigShifts", type=int, help="Managing MDX 'BigShifts' trick value.", required=False, default=7)
m.add_argument("--vocals_only", action='store_true', help="Vocals + instrumental only")
m.add_argument("--use_BSRoformer", action='store_true', help="use BSRoformer in vocal ensemble")
m.add_argument("--BSRoformer_model", type=str, help="Which checkpoint to use", required=False, default="ep_317_1297")
m.add_argument("--use_InstVoc", action='store_true', help="use instVoc in vocal ensemble")
m.add_argument("--use_VitLarge", action='store_true', help="use VitLarge in vocal ensemble")
m.add_argument("--use_InstHQ4", action='store_true', help="use InstHQ4 in vocal ensemble")
m.add_argument("--use_VOCFT", action='store_true', help="use VOCFT in vocal ensemble")
m.add_argument("--output_format", type=str, help="Output audio folder", default="float")
m.add_argument("--input_gain", type=int, help="input volume gain", required=False, default=0)
m.add_argument("--restore_gain", action='store_true', help="restore original gain after separation")
m.add_argument("--filter_vocals", action='store_true', help="Remove audio below 50hz in vocals stem")
options = m.parse_args().__dict__
print("Options: ")
print(f'Input Gain: {options["input_gain"]}dB')
print(f'Restore Gain: {options["restore_gain"]}')
print(f'BigShifts: {options["BigShifts"]}\n')
print(f'BSRoformer_model: {options["BSRoformer_model"]}')
print(f'weight_BSRoformer: {options["weight_BSRoformer"]}')
print(f'weight_InstVoc: {options["weight_InstVoc"]}\n')
print(f'use_VitLarge: {options["use_VitLarge"]}')
if options["use_VitLarge"] is True:
print(f'weight_VitLarge: {options["weight_VitLarge"]}\n')
print(f'use_VOCFT: {options["use_VOCFT"]}')
if options["use_VOCFT"] is True:
print(f'overlap_VOCFT: {options["overlap_VOCFT"]}')
print(f'weight_VOCFT: {options["weight_VOCFT"]}\n')
print(f'use_InstHQ4: {options["use_InstHQ4"]}')
if options["use_InstHQ4"] is True:
print(f'overlap_InstHQ4: {options["overlap_InstHQ4"]}')
print(f'weight_InstHQ4: {options["weight_InstHQ4"]}\n')
print(f'vocals_only: {options["vocals_only"]}')
if options["vocals_only"] is False:
print(f'overlap_demucs: {options["overlap_demucs"]}\n')
print(f'output_format: {options["output_format"]}\n')
predict_with_model(options)
print('Time: {:.0f} sec'.format(time() - start_time))