|
|
|
|
|
if __name__ == '__main__': |
|
import os |
|
|
|
gpu_use = "0" |
|
|
|
print('GPU use: {}'.format(gpu_use)) |
|
os.environ["CUDA_VISIBLE_DEVICES"] = "{}".format(gpu_use) |
|
import warnings |
|
warnings.filterwarnings("ignore") |
|
|
|
from tqdm import tqdm |
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import os |
|
import argparse |
|
import soundfile as sf |
|
from demucs.states import load_model |
|
from demucs import pretrained |
|
from demucs.apply import apply_model |
|
import onnxruntime as ort |
|
from time import time |
|
import librosa |
|
import hashlib |
|
from scipy import signal |
|
import gc |
|
import yaml |
|
from ml_collections import ConfigDict |
|
import sys |
|
import math |
|
import pathlib |
|
import warnings |
|
from scipy.signal import resample_poly |
|
|
|
from modules.tfc_tdf_v2 import Conv_TDF_net_trim_model |
|
from modules.tfc_tdf_v3 import TFC_TDF_net, STFT |
|
from modules.segm_models import Segm_Models_Net |
|
from modules.bs_roformer import BSRoformer |
|
|
|
|
|
|
|
def get_models(name, device, load=True, vocals_model_type=0): |
|
if vocals_model_type == 2: |
|
model_vocals = Conv_TDF_net_trim_model( |
|
device=device, |
|
target_name='vocals', |
|
L=11, |
|
n_fft=7680, |
|
dim_f=3072 |
|
) |
|
elif vocals_model_type == 3: |
|
model_vocals = Conv_TDF_net_trim_model( |
|
device=device, |
|
target_name='instrum', |
|
L=11, |
|
n_fft=5120, |
|
dim_f=2560 |
|
) |
|
|
|
return [model_vocals] |
|
|
|
|
|
def get_model_from_config(model_type, config_path): |
|
with open(config_path) as f: |
|
config = ConfigDict(yaml.load(f, Loader=yaml.FullLoader)) |
|
if model_type == 'mdx23c': |
|
from modules.tfc_tdf_v3 import TFC_TDF_net |
|
model = TFC_TDF_net(config) |
|
elif model_type == 'segm_models': |
|
from modules.segm_models import Segm_Models_Net |
|
model = Segm_Models_Net(config) |
|
elif model_type == 'bs_roformer': |
|
from modules.bs_roformer import BSRoformer |
|
model = BSRoformer( |
|
**dict(config.model) |
|
) |
|
else: |
|
print('Unknown model: {}'.format(model_type)) |
|
model = None |
|
return model, config |
|
|
|
|
|
def demix_new(model, mix, device, config, dim_t=256): |
|
mix = torch.tensor(mix) |
|
|
|
N = 2 |
|
batch_size = 1 |
|
mdx_window_size = dim_t |
|
C = config.audio.hop_length * (mdx_window_size - 1) |
|
fade_size = C // 100 |
|
step = int(C // N) |
|
border = C - step |
|
length_init = mix.shape[-1] |
|
|
|
|
|
|
|
if length_init > 2 * border and (border > 0): |
|
mix = nn.functional.pad(mix, (border, border), mode='reflect') |
|
|
|
|
|
|
|
window_size = C |
|
fadein = torch.linspace(0, 1, fade_size) |
|
fadeout = torch.linspace(1, 0, fade_size) |
|
window_start = torch.ones(window_size) |
|
window_middle = torch.ones(window_size) |
|
window_finish = torch.ones(window_size) |
|
window_start[-fade_size:] *= fadeout |
|
window_finish[:fade_size] *= fadein |
|
window_middle[-fade_size:] *= fadeout |
|
window_middle[:fade_size] *= fadein |
|
|
|
|
|
|
|
|
|
with torch.cuda.amp.autocast(): |
|
with torch.inference_mode(): |
|
if config.training.target_instrument is not None: |
|
req_shape = (1, ) + tuple(mix.shape) |
|
else: |
|
req_shape = (len(config.training.instruments),) + tuple(mix.shape) |
|
|
|
result = torch.zeros(req_shape, dtype=torch.float32) |
|
counter = torch.zeros(req_shape, dtype=torch.float32) |
|
i = 0 |
|
batch_data = [] |
|
batch_locations = [] |
|
while i < mix.shape[1]: |
|
|
|
part = mix[:, i:i + C].to(device) |
|
length = part.shape[-1] |
|
if length < C: |
|
if length > C // 2 + 1: |
|
part = nn.functional.pad(input=part, pad=(0, C - length), mode='reflect') |
|
else: |
|
part = nn.functional.pad(input=part, pad=(0, C - length, 0, 0), mode='constant', value=0) |
|
batch_data.append(part) |
|
batch_locations.append((i, length)) |
|
i += step |
|
|
|
if len(batch_data) >= batch_size or (i >= mix.shape[1]): |
|
arr = torch.stack(batch_data, dim=0) |
|
x = model(arr) |
|
|
|
window = window_middle |
|
if i - step == 0: |
|
window = window_start |
|
elif i >= mix.shape[1]: |
|
window = window_finish |
|
|
|
for j in range(len(batch_locations)): |
|
start, l = batch_locations[j] |
|
result[..., start:start+l] += x[j][..., :l].cpu() * window[..., :l] |
|
counter[..., start:start+l] += window[..., :l] |
|
|
|
batch_data = [] |
|
batch_locations = [] |
|
|
|
estimated_sources = result / counter |
|
estimated_sources = estimated_sources.cpu().numpy() |
|
np.nan_to_num(estimated_sources, copy=False, nan=0.0) |
|
|
|
if length_init > 2 * border and (border > 0): |
|
|
|
estimated_sources = estimated_sources[..., border:-border] |
|
|
|
if config.training.target_instrument is None: |
|
return {k: v for k, v in zip(config.training.instruments, estimated_sources)} |
|
else: |
|
return {k: v for k, v in zip([config.training.target_instrument], estimated_sources)} |
|
|
|
|
|
def demix_new_wrapper(mix, device, model, config, dim_t=256): |
|
if options["BigShifts"] <= 0: |
|
bigshifts = 1 |
|
else: |
|
bigshifts = options["BigShifts"] |
|
|
|
shift_in_samples = mix.shape[1] // bigshifts |
|
shifts = [x * shift_in_samples for x in range(bigshifts)] |
|
|
|
results = [] |
|
|
|
for shift in tqdm(shifts, position=0): |
|
shifted_mix = np.concatenate((mix[:, -shift:], mix[:, :-shift]), axis=-1) |
|
sources = demix_new(model, shifted_mix, device, config, dim_t=dim_t) |
|
vocals = next(sources[key] for key in sources.keys() if key.lower() == "vocals") |
|
unshifted_vocals = np.concatenate((vocals[..., shift:], vocals[..., :shift]), axis=-1) |
|
vocals *= 1 |
|
|
|
results.append(unshifted_vocals) |
|
|
|
vocals = np.mean(results, axis=0) |
|
|
|
return vocals |
|
|
|
def demix_vitlarge(model, mix, device): |
|
C = model.config.audio.hop_length * (2 * model.config.inference.dim_t - 1) |
|
N = 2 |
|
step = C // N |
|
|
|
with torch.cuda.amp.autocast(): |
|
with torch.no_grad(): |
|
if model.config.training.target_instrument is not None: |
|
req_shape = (1, ) + tuple(mix.shape) |
|
else: |
|
req_shape = (len(model.config.training.instruments),) + tuple(mix.shape) |
|
|
|
mix = mix.to(device) |
|
result = torch.zeros(req_shape, dtype=torch.float32).to(device) |
|
counter = torch.zeros(req_shape, dtype=torch.float32).to(device) |
|
i = 0 |
|
|
|
while i < mix.shape[1]: |
|
part = mix[:, i:i + C] |
|
length = part.shape[-1] |
|
if length < C: |
|
part = nn.functional.pad(input=part, pad=(0, C - length, 0, 0), mode='constant', value=0) |
|
x = model(part.unsqueeze(0))[0] |
|
result[..., i:i+length] += x[..., :length] |
|
counter[..., i:i+length] += 1. |
|
i += step |
|
estimated_sources = result / counter |
|
|
|
if model.config.training.target_instrument is None: |
|
return {k: v for k, v in zip(model.config.training.instruments, estimated_sources.cpu().numpy())} |
|
else: |
|
return {k: v for k, v in zip([model.config.training.target_instrument], estimated_sources.cpu().numpy())} |
|
|
|
|
|
def demix_full_vitlarge(mix, device, model): |
|
if options["BigShifts"] <= 0: |
|
bigshifts = 1 |
|
else: |
|
bigshifts = options["BigShifts"] |
|
shift_in_samples = mix.shape[1] // bigshifts |
|
shifts = [x * shift_in_samples for x in range(bigshifts)] |
|
|
|
results1 = [] |
|
results2 = [] |
|
mix = torch.from_numpy(mix).type('torch.FloatTensor').to(device) |
|
for shift in tqdm(shifts, position=0): |
|
shifted_mix = torch.cat((mix[:, -shift:], mix[:, :-shift]), dim=-1) |
|
sources = demix_vitlarge(model, shifted_mix, device) |
|
sources1 = sources["vocals"] |
|
sources2 = sources["other"] |
|
restored_sources1 = np.concatenate((sources1[..., shift:], sources1[..., :shift]), axis=-1) |
|
restored_sources2 = np.concatenate((sources2[..., shift:], sources2[..., :shift]), axis=-1) |
|
results1.append(restored_sources1) |
|
results2.append(restored_sources2) |
|
|
|
|
|
sources1 = np.mean(results1, axis=0) |
|
sources2 = np.mean(results2, axis=0) |
|
|
|
return sources1, sources2 |
|
|
|
|
|
def demix_wrapper(mix, device, models, infer_session, overlap=0.2, bigshifts=1, vc=1.0): |
|
if bigshifts <= 0: |
|
bigshifts = 1 |
|
shift_in_samples = mix.shape[1] // bigshifts |
|
shifts = [x * shift_in_samples for x in range(bigshifts)] |
|
results = [] |
|
|
|
for shift in tqdm(shifts, position=0): |
|
shifted_mix = np.concatenate((mix[:, -shift:], mix[:, :-shift]), axis=-1) |
|
sources = demix(shifted_mix, device, models, infer_session, overlap) * vc |
|
restored_sources = np.concatenate((sources[..., shift:], sources[..., :shift]), axis=-1) |
|
results.append(restored_sources) |
|
|
|
sources = np.mean(results, axis=0) |
|
|
|
return sources |
|
|
|
def demix(mix, device, models, infer_session, overlap=0.2): |
|
start_time = time() |
|
sources = [] |
|
n_sample = mix.shape[1] |
|
n_fft = models[0].n_fft |
|
n_bins = n_fft//2+1 |
|
trim = n_fft//2 |
|
hop = models[0].hop |
|
dim_f = models[0].dim_f |
|
dim_t = models[0].dim_t |
|
chunk_size = hop * (dim_t -1) |
|
org_mix = mix |
|
tar_waves_ = [] |
|
mdx_batch_size = 1 |
|
overlap = overlap |
|
gen_size = chunk_size-2*trim |
|
pad = gen_size + trim - ((mix.shape[-1]) % gen_size) |
|
|
|
mixture = np.concatenate((np.zeros((2, trim), dtype='float32'), mix, np.zeros((2, pad), dtype='float32')), 1) |
|
|
|
step = int((1 - overlap) * chunk_size) |
|
result = np.zeros((1, 2, mixture.shape[-1]), dtype=np.float32) |
|
divider = np.zeros((1, 2, mixture.shape[-1]), dtype=np.float32) |
|
total = 0 |
|
total_chunks = (mixture.shape[-1] + step - 1) // step |
|
|
|
for i in range(0, mixture.shape[-1], step): |
|
total += 1 |
|
start = i |
|
end = min(i + chunk_size, mixture.shape[-1]) |
|
chunk_size_actual = end - start |
|
|
|
if overlap == 0: |
|
window = None |
|
else: |
|
window = np.hanning(chunk_size_actual) |
|
window = np.tile(window[None, None, :], (1, 2, 1)) |
|
|
|
mix_part_ = mixture[:, start:end] |
|
if end != i + chunk_size: |
|
pad_size = (i + chunk_size) - end |
|
mix_part_ = np.concatenate((mix_part_, np.zeros((2, pad_size), dtype='float32')), axis=-1) |
|
|
|
|
|
mix_part = torch.tensor([mix_part_], dtype=torch.float32).to(device) |
|
mix_waves = mix_part.split(mdx_batch_size) |
|
|
|
with torch.no_grad(): |
|
for mix_wave in mix_waves: |
|
_ort = infer_session |
|
stft_res = models[0].stft(mix_wave) |
|
stft_res[:, :, :3, :] *= 0 |
|
res = _ort.run(None, {'input': stft_res.cpu().numpy()})[0] |
|
ten = torch.tensor(res) |
|
tar_waves = models[0].istft(ten.to(device)) |
|
tar_waves = tar_waves.cpu().detach().numpy() |
|
|
|
if window is not None: |
|
tar_waves[..., :chunk_size_actual] *= window |
|
divider[..., start:end] += window |
|
else: |
|
divider[..., start:end] += 1 |
|
result[..., start:end] += tar_waves[..., :end-start] |
|
|
|
|
|
tar_waves = result / divider |
|
tar_waves_.append(tar_waves) |
|
tar_waves_ = np.vstack(tar_waves_)[:, :, trim:-trim] |
|
tar_waves = np.concatenate(tar_waves_, axis=-1)[:, :mix.shape[-1]] |
|
source = tar_waves[:,0:None] |
|
|
|
return source |
|
|
|
class EnsembleDemucsMDXMusicSeparationModel: |
|
""" |
|
Doesn't do any separation just passes the input back as output |
|
""" |
|
def __init__(self, options): |
|
""" |
|
options - user options |
|
""" |
|
|
|
if torch.cuda.is_available(): |
|
device = 'cuda:0' |
|
else: |
|
device = 'cpu' |
|
if 'cpu' in options: |
|
if options['cpu']: |
|
device = 'cpu' |
|
|
|
self.single_onnx = False |
|
if 'single_onnx' in options: |
|
if options['single_onnx']: |
|
self.single_onnx = True |
|
|
|
self.overlap_demucs = float(options['overlap_demucs']) |
|
self.overlap_MDX = float(options['overlap_VOCFT']) |
|
if self.overlap_demucs > 0.99: |
|
self.overlap_demucs = 0.99 |
|
if self.overlap_demucs < 0.0: |
|
self.overlap_demucs = 0.0 |
|
if self.overlap_MDX > 0.99: |
|
self.overlap_MDX = 0.99 |
|
if self.overlap_MDX < 0.0: |
|
self.overlap_MDX = 0.0 |
|
model_folder = os.path.dirname(os.path.realpath(__file__)) + '/models/' |
|
""" |
|
|
|
remote_url = 'https://dl.fbaipublicfiles.com/demucs/hybrid_transformer/04573f0d-f3cf25b2.th' |
|
model_path = model_folder + '04573f0d-f3cf25b2.th' |
|
if not os.path.isfile(model_path): |
|
torch.hub.download_url_to_file(remote_url, model_folder + '04573f0d-f3cf25b2.th') |
|
model_vocals = load_model(model_path) |
|
model_vocals.to(device) |
|
self.model_vocals_only = model_vocals |
|
""" |
|
|
|
if options['vocals_only'] is False: |
|
self.models = [] |
|
self.weights_vocals = np.array([10, 1, 8, 9]) |
|
self.weights_bass = np.array([19, 4, 5, 8]) |
|
self.weights_drums = np.array([18, 2, 4, 9]) |
|
self.weights_other = np.array([14, 2, 5, 10]) |
|
|
|
model1 = pretrained.get_model('htdemucs_ft') |
|
model1.to(device) |
|
self.models.append(model1) |
|
|
|
model2 = pretrained.get_model('htdemucs') |
|
model2.to(device) |
|
self.models.append(model2) |
|
|
|
model3 = pretrained.get_model('htdemucs_6s') |
|
model3.to(device) |
|
self.models.append(model3) |
|
|
|
model4 = pretrained.get_model('hdemucs_mmi') |
|
model4.to(device) |
|
self.models.append(model4) |
|
|
|
if 0: |
|
for model in self.models: |
|
pass |
|
|
|
''' |
|
['drums', 'bass', 'other', 'vocals'] |
|
['drums', 'bass', 'other', 'vocals'] |
|
['drums', 'bass', 'other', 'vocals', 'guitar', 'piano'] |
|
['drums', 'bass', 'other', 'vocals'] |
|
''' |
|
|
|
""" |
|
#BS-RoformerDRUMS+BASS init |
|
print("Loading BS-RoformerDB into memory") |
|
remote_url_bsrofoDB = 'https://github.com/TRvlvr/model_repo/releases/download/all_public_uvr_models/model_bs_roformer_ep_937_sdr_10.5309.ckpt' |
|
remote_url_conf_bsrofoDB = 'https://raw.githubusercontent.com/TRvlvr/application_data/main/mdx_model_data/mdx_c_configs/model_bs_roformer_ep_937_sdr_10.5309.yaml' |
|
if not os.path.isfile(model_folder+'model_bs_roformer_ep_937_sdr_10.5309.ckpt'): |
|
torch.hub.download_url_to_file(remote_url_bsrofoDB, model_folder+'model_bs_roformer_ep_937_sdr_10.5309.ckpt') |
|
if not os.path.isfile(model_folder+'model_bs_roformer_ep_937_sdr_10.5309.yaml'): |
|
torch.hub.download_url_to_file(remote_url_conf_bsrofoDB, model_folder+'model_bs_roformer_ep_937_sdr_10.5309.yaml') |
|
|
|
with open(model_folder + 'model_bs_roformer_ep_937_sdr_10.5309.yaml') as f: |
|
config_bsrofoDB = ConfigDict(yaml.load(f, Loader=yaml.FullLoader)) |
|
|
|
self.model_bsrofoDB = BSRoformer(**dict(config_bsrofoDB.model)) |
|
self.config_bsrofoDB = config_bsrofoDB |
|
self.model_bsrofoDB.load_state_dict(torch.load(model_folder+'model_bs_roformer_ep_937_sdr_10.5309.ckpt')) |
|
self.device = torch.device(device) |
|
self.model_bsrofoDB = self.model_bsrofoDB.to(device) |
|
self.model_bsrofoDB.eval() |
|
""" |
|
|
|
if device == 'cpu': |
|
providers = ["CPUExecutionProvider"] |
|
else: |
|
providers = ["CUDAExecutionProvider"] |
|
|
|
|
|
|
|
print("Loading BS-Roformer into memory") |
|
if options["BSRoformer_model"] == "ep_368_1296": |
|
model_name = "model_bs_roformer_ep_368_sdr_12.9628" |
|
else: |
|
model_name = "model_bs_roformer_ep_317_sdr_12.9755" |
|
remote_url_bsrofo = f'https://github.com/TRvlvr/model_repo/releases/download/all_public_uvr_models/{model_name}.ckpt' |
|
remote_url_conf_bsrofo = f'https://raw.githubusercontent.com/TRvlvr/application_data/main/mdx_model_data/mdx_c_configs/{model_name}.yaml' |
|
if not os.path.isfile(model_folder+f'{model_name}.ckpt'): |
|
torch.hub.download_url_to_file(remote_url_bsrofo, model_folder+f'{model_name}.ckpt') |
|
if not os.path.isfile(model_folder+f'{model_name}.yaml'): |
|
torch.hub.download_url_to_file(remote_url_conf_bsrofo, model_folder+f'{model_name}.yaml') |
|
|
|
with open(model_folder + f'{model_name}.yaml') as f: |
|
config_bsrofo = ConfigDict(yaml.load(f, Loader=yaml.FullLoader)) |
|
|
|
self.model_bsrofo = BSRoformer(**dict(config_bsrofo.model)) |
|
self.config_bsrofo = config_bsrofo |
|
self.model_bsrofo.load_state_dict(torch.load(model_folder+f'{model_name}.ckpt')) |
|
self.device = torch.device(device) |
|
self.model_bsrofo = self.model_bsrofo.to(device) |
|
self.model_bsrofo.eval() |
|
|
|
|
|
|
|
print("Loading InstVoc into memory") |
|
remote_url_mdxv3 = 'https://github.com/TRvlvr/model_repo/releases/download/all_public_uvr_models/MDX23C-8KFFT-InstVoc_HQ.ckpt' |
|
remote_url_conf_mdxv3 = 'https://raw.githubusercontent.com/TRvlvr/application_data/main/mdx_model_data/mdx_c_configs/model_2_stem_full_band_8k.yaml' |
|
if not os.path.isfile(model_folder+'MDX23C-8KFFT-InstVoc_HQ.ckpt'): |
|
torch.hub.download_url_to_file(remote_url_mdxv3, model_folder+'MDX23C-8KFFT-InstVoc_HQ.ckpt') |
|
if not os.path.isfile(model_folder+'model_2_stem_full_band_8k.yaml'): |
|
torch.hub.download_url_to_file(remote_url_conf_mdxv3, model_folder+'model_2_stem_full_band_8k.yaml') |
|
|
|
with open(model_folder + 'model_2_stem_full_band_8k.yaml') as f: |
|
config_mdxv3 = ConfigDict(yaml.load(f, Loader=yaml.FullLoader)) |
|
|
|
self.config_mdxv3 = config_mdxv3 |
|
self.model_mdxv3 = TFC_TDF_net(config_mdxv3) |
|
self.model_mdxv3.load_state_dict(torch.load(model_folder+'MDX23C-8KFFT-InstVoc_HQ.ckpt')) |
|
self.device = torch.device(device) |
|
self.model_mdxv3 = self.model_mdxv3.to(device) |
|
self.model_mdxv3.eval() |
|
|
|
|
|
if options['use_VitLarge'] is True: |
|
print("Loading VitLarge into memory") |
|
remote_url_vitlarge = 'https://github.com/ZFTurbo/Music-Source-Separation-Training/releases/download/v1.0.0/model_vocals_segm_models_sdr_9.77.ckpt' |
|
remote_url_vl_conf = 'https://github.com/ZFTurbo/Music-Source-Separation-Training/releases/download/v1.0.0/config_vocals_segm_models.yaml' |
|
if not os.path.isfile(model_folder+'model_vocals_segm_models_sdr_9.77.ckpt'): |
|
torch.hub.download_url_to_file(remote_url_vitlarge, model_folder+'model_vocals_segm_models_sdr_9.77.ckpt') |
|
if not os.path.isfile(model_folder+'config_vocals_segm_models.yaml'): |
|
torch.hub.download_url_to_file(remote_url_vl_conf, model_folder+'config_vocals_segm_models.yaml') |
|
|
|
with open(model_folder + 'config_vocals_segm_models.yaml') as f: |
|
config_vl = ConfigDict(yaml.load(f, Loader=yaml.FullLoader)) |
|
|
|
self.config_vl = config_vl |
|
self.model_vl = Segm_Models_Net(config_vl) |
|
self.model_vl.load_state_dict(torch.load(model_folder+'model_vocals_segm_models_sdr_9.77.ckpt')) |
|
self.device = torch.device(device) |
|
self.model_vl = self.model_vl.to(device) |
|
self.model_vl.eval() |
|
|
|
|
|
if options['use_VOCFT']: |
|
print("Loading VOCFT into memory") |
|
self.mdx_models1 = get_models('tdf_extra', load=False, device=device, vocals_model_type=2) |
|
model_path_onnx1 = model_folder + 'UVR-MDX-NET-Voc_FT.onnx' |
|
remote_url_onnx1 = 'https://github.com/TRvlvr/model_repo/releases/download/all_public_uvr_models/UVR-MDX-NET-Voc_FT.onnx' |
|
|
|
if not os.path.isfile(model_path_onnx1): |
|
torch.hub.download_url_to_file(remote_url_onnx1, model_path_onnx1) |
|
|
|
self.infer_session1 = ort.InferenceSession( |
|
model_path_onnx1, |
|
providers=providers, |
|
provider_options=[{"device_id": 0}], |
|
) |
|
|
|
|
|
if options['use_InstHQ4']: |
|
print("Loading InstHQ4 into memory") |
|
self.mdx_models2 = get_models('tdf_extra', load=False, device=device, vocals_model_type=3) |
|
model_path_onnx2 = model_folder + 'UVR-MDX-NET-Inst_HQ_4.onnx' |
|
remote_url_onnx2 = 'https://github.com/TRvlvr/model_repo/releases/download/all_public_uvr_models/UVR-MDX-NET-Inst_HQ_4.onnx' |
|
|
|
if not os.path.isfile(model_path_onnx2): |
|
torch.hub.download_url_to_file(remote_url_onnx2, model_path_onnx2) |
|
|
|
self.infer_session2 = ort.InferenceSession( |
|
model_path_onnx2, |
|
providers=providers, |
|
provider_options=[{"device_id": 0}], |
|
) |
|
|
|
|
|
self.device = device |
|
pass |
|
|
|
@property |
|
def instruments(self): |
|
|
|
if options['vocals_only'] is False: |
|
return ['bass', 'drums', 'other', 'vocals'] |
|
else: |
|
return ['vocals'] |
|
|
|
def raise_aicrowd_error(self, msg): |
|
""" Will be used by the evaluator to provide logs, DO NOT CHANGE """ |
|
raise NameError(msg) |
|
|
|
def separate_music_file( |
|
self, |
|
mixed_sound_array, |
|
sample_rate, |
|
current_file_number=0, |
|
total_files=0, |
|
): |
|
""" |
|
Implements the sound separation for a single sound file |
|
Inputs: Outputs from soundfile.read('mixture.wav') |
|
mixed_sound_array |
|
sample_rate |
|
|
|
Outputs: |
|
separated_music_arrays: Dictionary numpy array of each separated instrument |
|
output_sample_rates: Dictionary of sample rates separated sequence |
|
""" |
|
|
|
|
|
|
|
separated_music_arrays = {} |
|
output_sample_rates = {} |
|
|
|
|
|
|
|
|
|
overlap_demucs = self.overlap_demucs |
|
overlap_MDX = self.overlap_MDX |
|
shifts = 0 |
|
overlap = overlap_demucs |
|
|
|
vocals_model_names = [ |
|
"BSRoformer", |
|
"InstVoc", |
|
"VitLarge", |
|
"VOCFT", |
|
"InstHQ4" |
|
] |
|
|
|
vocals_model_outputs = [] |
|
weights = [] |
|
|
|
for model_name in vocals_model_names: |
|
|
|
if options[f"use_{model_name}"]: |
|
|
|
if model_name == "BSRoformer": |
|
print(f'Processing vocals with {model_name} model...') |
|
sources_bs = demix_new_wrapper(mixed_sound_array.T, self.device, self.model_bsrofo, self.config_bsrofo, dim_t=1101) |
|
vocals_bs = match_array_shapes(sources_bs, mixed_sound_array.T) |
|
vocals_model_outputs.append(vocals_bs) |
|
weights.append(options.get(f"weight_{model_name}")) |
|
|
|
|
|
if model_name == "InstVoc": |
|
print(f'Processing vocals with {model_name} model...') |
|
sources3 = demix_new_wrapper(mixed_sound_array.T, self.device, self.model_mdxv3, self.config_mdxv3, dim_t=1024) |
|
vocals3 = match_array_shapes(sources3, mixed_sound_array.T) |
|
vocals_model_outputs.append(vocals3) |
|
weights.append(options.get(f"weight_{model_name}")) |
|
|
|
elif model_name == "VitLarge": |
|
print(f'Processing vocals with {model_name} model...') |
|
vocals4, instrum4 = demix_full_vitlarge(mixed_sound_array.T, self.device, self.model_vl) |
|
vocals4 = match_array_shapes(vocals4, mixed_sound_array.T) |
|
vocals_model_outputs.append(vocals4) |
|
weights.append(options.get(f"weight_{model_name}")) |
|
|
|
elif model_name == "VOCFT": |
|
print(f'Processing vocals with {model_name} model...') |
|
overlap = overlap_MDX |
|
sources1 = 0.5 * demix_wrapper( |
|
mixed_sound_array.T, |
|
self.device, |
|
self.mdx_models1, |
|
self.infer_session1, |
|
overlap=overlap, |
|
vc=1.021, |
|
bigshifts=options['BigShifts'] // 3 |
|
) |
|
sources1 += 0.5 * -demix_wrapper( |
|
-mixed_sound_array.T, |
|
self.device, |
|
self.mdx_models1, |
|
self.infer_session1, |
|
overlap=overlap, |
|
vc=1.021, |
|
bigshifts=options['BigShifts'] // 3 |
|
) |
|
vocals_mdxb1 = sources1 |
|
vocals_model_outputs.append(vocals_mdxb1) |
|
weights.append(options.get(f"weight_{model_name}")) |
|
|
|
elif model_name == "InstHQ4": |
|
print(f'Processing vocals with {model_name} model...') |
|
overlap = overlap_MDX |
|
sources2 = 0.5 * demix_wrapper( |
|
mixed_sound_array.T, |
|
self.device, |
|
self.mdx_models2, |
|
self.infer_session2, |
|
overlap=overlap, |
|
vc=1.019, |
|
bigshifts=options['BigShifts'] // 3 |
|
) |
|
sources2 += 0.5 * -demix_wrapper( |
|
-mixed_sound_array.T, |
|
self.device, |
|
self.mdx_models2, |
|
self.infer_session2, |
|
overlap=overlap, |
|
vc=1.019, |
|
bigshifts=options['BigShifts'] // 3 |
|
) |
|
vocals_mdxb2 = mixed_sound_array.T - sources2 |
|
vocals_model_outputs.append(vocals_mdxb2) |
|
weights.append(options.get(f"weight_{model_name}")) |
|
|
|
else: |
|
|
|
pass |
|
|
|
print('Processing vocals: DONE!') |
|
|
|
vocals_combined = np.zeros_like(vocals_model_outputs[0]) |
|
|
|
for output, weight in zip(vocals_model_outputs, weights): |
|
vocals_combined += output * weight |
|
|
|
vocals_combined /= np.sum(weights) |
|
|
|
vocals_low = lr_filter(vocals_combined.T, 12000, 'lowpass') |
|
vocals_high = lr_filter(vocals3.T, 12000, 'highpass') |
|
|
|
vocals = vocals_low + vocals_high |
|
|
|
|
|
if options['filter_vocals'] is True: |
|
vocals = lr_filter(vocals, 50, 'highpass', order=8) |
|
|
|
|
|
instrum = mixed_sound_array - vocals |
|
|
|
if options['vocals_only'] is False: |
|
|
|
""" |
|
print(f'Processing drums & bass with 2nd BS-Roformer model...') |
|
other_bs2 = demix_full_bsrofo(instrum.T, self.device, self.model_bsrofoDB, self.config_bsrofoDB) |
|
other_bs2 = match_array_shapes(other_bs2, mixed_sound_array.T) |
|
drums_bass_bs2 = mixed_sound_array.T - other_bs2 |
|
|
|
|
|
print('Starting Demucs processing...') |
|
|
|
drums_bass_bs2 = np.expand_dims(drums_bass_bs2.T, axis=0) |
|
drums_bass_bs2 = torch.from_numpy(drums_bass_bs2).type('torch.FloatTensor').to(self.device) |
|
""" |
|
audio = np.expand_dims(instrum.T, axis=0) |
|
audio = torch.from_numpy(audio).type('torch.FloatTensor').to(self.device) |
|
all_outs = [] |
|
print('Processing with htdemucs_ft...') |
|
i = 0 |
|
overlap = overlap_demucs |
|
model = pretrained.get_model('htdemucs_ft') |
|
model.to(self.device) |
|
out = 0.5 * apply_model(model, audio, shifts=shifts, overlap=overlap)[0].cpu().numpy() \ |
|
+ 0.5 * -apply_model(model, -audio, shifts=shifts, overlap=overlap)[0].cpu().numpy() |
|
|
|
out[0] = self.weights_drums[i] * out[0] |
|
out[1] = self.weights_bass[i] * out[1] |
|
out[2] = self.weights_other[i] * out[2] |
|
out[3] = self.weights_vocals[i] * out[3] |
|
all_outs.append(out) |
|
model = model.cpu() |
|
del model |
|
gc.collect() |
|
i = 1 |
|
print('Processing with htdemucs...') |
|
overlap = overlap_demucs |
|
model = pretrained.get_model('htdemucs') |
|
model.to(self.device) |
|
out = 0.5 * apply_model(model, audio, shifts=shifts, overlap=overlap)[0].cpu().numpy() \ |
|
+ 0.5 * -apply_model(model, -audio, shifts=shifts, overlap=overlap)[0].cpu().numpy() |
|
|
|
out[0] = self.weights_drums[i] * out[0] |
|
out[1] = self.weights_bass[i] * out[1] |
|
out[2] = self.weights_other[i] * out[2] |
|
out[3] = self.weights_vocals[i] * out[3] |
|
all_outs.append(out) |
|
model = model.cpu() |
|
del model |
|
gc.collect() |
|
i = 2 |
|
print('Processing with htdemucs_6s...') |
|
overlap = overlap_demucs |
|
model = pretrained.get_model('htdemucs_6s') |
|
model.to(self.device) |
|
out = apply_model(model, audio, shifts=shifts, overlap=overlap)[0].cpu().numpy() |
|
|
|
|
|
out[2] = out[2] + out[4] + out[5] |
|
out = out[:4] |
|
out[0] = self.weights_drums[i] * out[0] |
|
out[1] = self.weights_bass[i] * out[1] |
|
out[2] = self.weights_other[i] * out[2] |
|
out[3] = self.weights_vocals[i] * out[3] |
|
all_outs.append(out) |
|
model = model.cpu() |
|
del model |
|
gc.collect() |
|
i = 3 |
|
print('Processing with htdemucs_mmi...') |
|
model = pretrained.get_model('hdemucs_mmi') |
|
model.to(self.device) |
|
out = 0.5 * apply_model(model, audio, shifts=shifts, overlap=overlap)[0].cpu().numpy() \ |
|
+ 0.5 * -apply_model(model, -audio, shifts=shifts, overlap=overlap)[0].cpu().numpy() |
|
|
|
out[0] = self.weights_drums[i] * out[0] |
|
out[1] = self.weights_bass[i] * out[1] |
|
out[2] = self.weights_other[i] * out[2] |
|
out[3] = self.weights_vocals[i] * out[3] |
|
all_outs.append(out) |
|
model = model.cpu() |
|
del model |
|
gc.collect() |
|
out = np.array(all_outs).sum(axis=0) |
|
out[0] = out[0] / self.weights_drums.sum() |
|
out[1] = out[1] / self.weights_bass.sum() |
|
out[2] = out[2] / self.weights_other.sum() |
|
out[3] = out[3] / self.weights_vocals.sum() |
|
|
|
|
|
res = mixed_sound_array - vocals - out[0].T - out[1].T |
|
res = np.clip(res, -1, 1) |
|
separated_music_arrays['other'] = (2 * res + out[2].T) / 3.0 |
|
output_sample_rates['other'] = sample_rate |
|
|
|
|
|
res = mixed_sound_array - vocals - out[1].T - out[2].T |
|
res = np.clip(res, -1, 1) |
|
separated_music_arrays['drums'] = (res + 2 * out[0].T.copy()) / 3.0 |
|
output_sample_rates['drums'] = sample_rate |
|
|
|
|
|
res = mixed_sound_array - vocals - out[0].T - out[2].T |
|
res = np.clip(res, -1, 1) |
|
separated_music_arrays['bass'] = (res + 2 * out[1].T) / 3.0 |
|
output_sample_rates['bass'] = sample_rate |
|
|
|
bass = separated_music_arrays['bass'] |
|
drums = separated_music_arrays['drums'] |
|
other = separated_music_arrays['other'] |
|
|
|
separated_music_arrays['other'] = mixed_sound_array - vocals - bass - drums |
|
separated_music_arrays['drums'] = mixed_sound_array - vocals - bass - other |
|
separated_music_arrays['bass'] = mixed_sound_array - vocals - drums - other |
|
|
|
|
|
separated_music_arrays['vocals'] = vocals |
|
output_sample_rates['vocals'] = sample_rate |
|
|
|
|
|
separated_music_arrays['instrum'] = instrum |
|
|
|
return separated_music_arrays, output_sample_rates |
|
|
|
|
|
def predict_with_model(options): |
|
|
|
output_format = options['output_format'] |
|
output_extension = 'flac' if output_format == 'FLAC' else "wav" |
|
output_format = 'PCM_16' if output_format == 'FLAC' else options['output_format'] |
|
|
|
for input_audio in options['input_audio']: |
|
if not os.path.isfile(input_audio): |
|
print('Error. No such file: {}. Please check path!'.format(input_audio)) |
|
return |
|
output_folder = options['output_folder'] |
|
if not os.path.isdir(output_folder): |
|
os.mkdir(output_folder) |
|
|
|
model = None |
|
model = EnsembleDemucsMDXMusicSeparationModel(options) |
|
|
|
for i, input_audio in enumerate(options['input_audio']): |
|
print('Go for: {}'.format(input_audio)) |
|
audio, sr = librosa.load(input_audio, mono=False, sr=44100) |
|
if len(audio.shape) == 1: |
|
audio = np.stack([audio, audio], axis=0) |
|
|
|
|
|
if options['input_gain'] != 0: |
|
audio = dBgain(audio, options['input_gain']) |
|
|
|
print("Input audio: {} Sample rate: {}".format(audio.shape, sr)) |
|
result, sample_rates = model.separate_music_file(audio.T, sr, i, len(options['input_audio'])) |
|
|
|
for instrum in model.instruments: |
|
output_name = os.path.splitext(os.path.basename(input_audio))[0] + '_{}.{}'.format(instrum, output_extension) |
|
if options["restore_gain"] is True: |
|
result[instrum] = dBgain(result[instrum], -options['input_gain']) |
|
sf.write(output_folder + '/' + output_name, result[instrum], sample_rates[instrum], subtype=output_format) |
|
print('File created: {}'.format(output_folder + '/' + output_name)) |
|
|
|
|
|
|
|
inst = result['instrum'] |
|
|
|
if options["restore_gain"] is True: |
|
inst = dBgain(inst, -options['input_gain']) |
|
|
|
output_name = os.path.splitext(os.path.basename(input_audio))[0] + '_{}.{}'.format('instrum', output_extension) |
|
sf.write(output_folder + '/' + output_name, inst, sr, subtype=output_format) |
|
print('File created: {}'.format(output_folder + '/' + output_name)) |
|
|
|
if options['vocals_only'] is False: |
|
|
|
inst2 = (result['bass'] + result['drums'] + result['other']) |
|
output_name = os.path.splitext(os.path.basename(input_audio))[0] + '_{}.{}'.format('instrum2', output_extension) |
|
sf.write(output_folder + '/' + output_name, inst2, sr, subtype=output_format) |
|
print('File created: {}'.format(output_folder + '/' + output_name)) |
|
|
|
|
|
|
|
def lr_filter(audio, cutoff, filter_type, order=6, sr=44100): |
|
audio = audio.T |
|
nyquist = 0.5 * sr |
|
normal_cutoff = cutoff / nyquist |
|
b, a = signal.butter(order//2, normal_cutoff, btype=filter_type, analog=False) |
|
sos = signal.tf2sos(b, a) |
|
filtered_audio = signal.sosfiltfilt(sos, audio) |
|
return filtered_audio.T |
|
|
|
def match_array_shapes(array_1:np.ndarray, array_2:np.ndarray): |
|
if array_1.shape[1] > array_2.shape[1]: |
|
array_1 = array_1[:,:array_2.shape[1]] |
|
elif array_1.shape[1] < array_2.shape[1]: |
|
padding = array_2.shape[1] - array_1.shape[1] |
|
array_1 = np.pad(array_1, ((0,0), (0,padding)), 'constant', constant_values=0) |
|
return array_1 |
|
|
|
def dBgain(audio, volume_gain_dB): |
|
attenuation = 10 ** (volume_gain_dB / 20) |
|
gained_audio = audio * attenuation |
|
return gained_audio |
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
start_time = time() |
|
print("started!\n") |
|
m = argparse.ArgumentParser() |
|
m.add_argument("--input_audio", "-i", nargs='+', type=str, help="Input audio location. You can provide multiple files at once", required=True) |
|
m.add_argument("--output_folder", "-r", type=str, help="Output audio folder", required=True) |
|
m.add_argument("--large_gpu", action='store_true', help="It will store all models on GPU for faster processing of multiple audio files. Requires 11 and more GB of free GPU memory.") |
|
m.add_argument("--single_onnx", action='store_true', help="Only use single ONNX model for vocals. Can be useful if you have not enough GPU memory.") |
|
m.add_argument("--cpu", action='store_true', help="Choose CPU instead of GPU for processing. Can be very slow.") |
|
m.add_argument("--overlap_demucs", type=float, help="Overlap of splited audio for light models. Closer to 1.0 - slower", required=False, default=0.1) |
|
m.add_argument("--overlap_VOCFT", type=float, help="Overlap of splited audio for heavy models. Closer to 1.0 - slower", required=False, default=0.1) |
|
m.add_argument("--overlap_InstHQ4", type=float, help="Overlap of splited audio for heavy models. Closer to 1.0 - slower", required=False, default=0.1) |
|
m.add_argument("--overlap_VitLarge", type=int, help="Overlap of splited audio for heavy models. Closer to 1.0 - slower", required=False, default=1) |
|
m.add_argument("--overlap_InstVoc", type=int, help="MDXv3 overlap", required=False, default=2) |
|
m.add_argument("--overlap_BSRoformer", type=int, help="BSRoformer overlap", required=False, default=2) |
|
m.add_argument("--weight_InstVoc", type=float, help="Weight of MDXv3 model", required=False, default=4) |
|
m.add_argument("--weight_VOCFT", type=float, help="Weight of VOC-FT model", required=False, default=1) |
|
m.add_argument("--weight_InstHQ4", type=float, help="Weight of instHQ4 model", required=False, default=1) |
|
m.add_argument("--weight_VitLarge", type=float, help="Weight of VitLarge model", required=False, default=1) |
|
m.add_argument("--weight_BSRoformer", type=float, help="Weight of BS-Roformer model", required=False, default=10) |
|
m.add_argument("--BigShifts", type=int, help="Managing MDX 'BigShifts' trick value.", required=False, default=7) |
|
m.add_argument("--vocals_only", action='store_true', help="Vocals + instrumental only") |
|
m.add_argument("--use_BSRoformer", action='store_true', help="use BSRoformer in vocal ensemble") |
|
m.add_argument("--BSRoformer_model", type=str, help="Which checkpoint to use", required=False, default="ep_317_1297") |
|
m.add_argument("--use_InstVoc", action='store_true', help="use instVoc in vocal ensemble") |
|
m.add_argument("--use_VitLarge", action='store_true', help="use VitLarge in vocal ensemble") |
|
m.add_argument("--use_InstHQ4", action='store_true', help="use InstHQ4 in vocal ensemble") |
|
m.add_argument("--use_VOCFT", action='store_true', help="use VOCFT in vocal ensemble") |
|
m.add_argument("--output_format", type=str, help="Output audio folder", default="float") |
|
m.add_argument("--input_gain", type=int, help="input volume gain", required=False, default=0) |
|
m.add_argument("--restore_gain", action='store_true', help="restore original gain after separation") |
|
m.add_argument("--filter_vocals", action='store_true', help="Remove audio below 50hz in vocals stem") |
|
options = m.parse_args().__dict__ |
|
print("Options: ") |
|
|
|
print(f'Input Gain: {options["input_gain"]}dB') |
|
print(f'Restore Gain: {options["restore_gain"]}') |
|
print(f'BigShifts: {options["BigShifts"]}\n') |
|
|
|
print(f'BSRoformer_model: {options["BSRoformer_model"]}') |
|
print(f'weight_BSRoformer: {options["weight_BSRoformer"]}') |
|
print(f'weight_InstVoc: {options["weight_InstVoc"]}\n') |
|
|
|
print(f'use_VitLarge: {options["use_VitLarge"]}') |
|
if options["use_VitLarge"] is True: |
|
print(f'weight_VitLarge: {options["weight_VitLarge"]}\n') |
|
|
|
print(f'use_VOCFT: {options["use_VOCFT"]}') |
|
if options["use_VOCFT"] is True: |
|
print(f'overlap_VOCFT: {options["overlap_VOCFT"]}') |
|
print(f'weight_VOCFT: {options["weight_VOCFT"]}\n') |
|
|
|
print(f'use_InstHQ4: {options["use_InstHQ4"]}') |
|
if options["use_InstHQ4"] is True: |
|
print(f'overlap_InstHQ4: {options["overlap_InstHQ4"]}') |
|
print(f'weight_InstHQ4: {options["weight_InstHQ4"]}\n') |
|
|
|
print(f'vocals_only: {options["vocals_only"]}') |
|
|
|
if options["vocals_only"] is False: |
|
print(f'overlap_demucs: {options["overlap_demucs"]}\n') |
|
|
|
print(f'output_format: {options["output_format"]}\n') |
|
predict_with_model(options) |
|
print('Time: {:.0f} sec'.format(time() - start_time)) |
|
|
|
|