|
import numpy as np |
|
import torch |
|
|
|
f0_bin = 256 |
|
f0_max = 1100.0 |
|
f0_min = 50.0 |
|
f0_mel_min = 1127 * np.log(1 + f0_min / 700) |
|
f0_mel_max = 1127 * np.log(1 + f0_max / 700) |
|
|
|
|
|
def f0_to_coarse(f0): |
|
is_torch = isinstance(f0, torch.Tensor) |
|
f0_mel = 1127 * (1 + f0 / 700).log() if is_torch else 1127 * np.log(1 + f0 / 700) |
|
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * (f0_bin - 2) / (f0_mel_max - f0_mel_min) + 1 |
|
|
|
f0_mel[f0_mel <= 1] = 1 |
|
f0_mel[f0_mel > f0_bin - 1] = f0_bin - 1 |
|
f0_coarse = (f0_mel + 0.5).long() if is_torch else np.rint(f0_mel).astype(np.int) |
|
assert f0_coarse.max() <= 255 and f0_coarse.min() >= 1, (f0_coarse.max(), f0_coarse.min()) |
|
return f0_coarse |
|
|
|
|
|
def norm_f0(f0, uv=None): |
|
if uv is None: |
|
uv = f0 == 0 |
|
f0 = np.log2(f0 + uv) |
|
f0[uv] = -np.inf |
|
return f0 |
|
|
|
|
|
def interp_f0(f0, uv=None): |
|
if uv is None: |
|
uv = f0 == 0 |
|
f0 = norm_f0(f0, uv) |
|
if uv.any() and not uv.all(): |
|
f0[uv] = np.interp(np.where(uv)[0], np.where(~uv)[0], f0[~uv]) |
|
return denorm_f0(f0, uv=None), uv |
|
|
|
|
|
def denorm_f0(f0, uv, pitch_padding=None): |
|
f0 = 2 ** f0 |
|
if uv is not None: |
|
f0[uv > 0] = 0 |
|
if pitch_padding is not None: |
|
f0[pitch_padding] = 0 |
|
return f0 |
|
|
|
|
|
def resample_align_curve(points: np.ndarray, original_timestep: float, target_timestep: float, align_length: int): |
|
t_max = (len(points) - 1) * original_timestep |
|
curve_interp = np.interp( |
|
np.arange(0, t_max, target_timestep), |
|
original_timestep * np.arange(len(points)), |
|
points |
|
).astype(points.dtype) |
|
delta_l = align_length - len(curve_interp) |
|
if delta_l < 0: |
|
curve_interp = curve_interp[:align_length] |
|
elif delta_l > 0: |
|
curve_interp = np.concatenate((curve_interp, np.full(delta_l, fill_value=curve_interp[-1])), axis=0) |
|
return curve_interp |
|
|