gosummer's picture
Upload 112 files
2a94974 verified
import numpy as np
import torch
import torch.nn as nn
import torchaudio
from torch.nn import functional as F
from .core import upsample
class HybridLoss(nn.Module):
def __init__(self, block_size, fft_min, fft_max, n_scale, lambda_uv, device):
super().__init__()
self.loss_rss_func = RSSLoss(fft_min, fft_max, n_scale, device = device)
self.loss_uv_func = UVLoss(block_size)
self.lambda_uv = lambda_uv
def forward(self, signal, s_h, x_true, uv_true, detach_uv=False, uv_tolerance=0.05):
loss_rss = self.loss_rss_func(signal, x_true)
loss_uv = self.loss_uv_func(signal, s_h, uv_true)
if detach_uv or loss_uv < uv_tolerance:
loss_uv = loss_uv.detach()
loss = loss_rss + self.lambda_uv * loss_uv
return loss, (loss_rss.float().item(), loss_uv.float().item())
class UVLoss(nn.Module):
def __init__(self, block_size, eps = 1e-5):
super().__init__()
self.block_size = block_size
self.eps = eps
def forward(self, signal, s_h, uv_true):
uv_mask = upsample(uv_true.unsqueeze(-1), self.block_size).squeeze(-1)
loss = torch.mean(torch.linalg.norm(s_h * uv_mask, dim = 1) / (torch.linalg.norm(signal * uv_mask , dim = 1) + self.eps))
return loss
class SSSLoss(nn.Module):
"""
Single-scale Spectral Loss.
"""
def __init__(self, n_fft=111, alpha=1.0, overlap=0, eps=1e-7):
super().__init__()
self.n_fft = n_fft
self.alpha = alpha
self.eps = eps
self.hop_length = int(n_fft * (1 - overlap)) # 25% of the length
self.spec = torchaudio.transforms.Spectrogram(n_fft=self.n_fft, hop_length=self.hop_length, power=1, normalized=True, center=False)
def forward(self, x_true, x_pred):
S_true = self.spec(x_true) + self.eps
S_pred = self.spec(x_pred) + self.eps
converge_term = torch.mean(torch.linalg.norm(S_true - S_pred, dim = (1, 2)) / torch.linalg.norm(S_true + S_pred, dim = (1, 2)))
log_term = F.l1_loss(S_true.log(), S_pred.log())
loss = converge_term + self.alpha * log_term
return loss
class MSSLoss(nn.Module):
"""
Multi-scale Spectral Loss.
Usage ::
mssloss = MSSLoss([2048, 1024, 512, 256], alpha=1.0, overlap=0.75)
mssloss(y_pred, y_gt)
input(y_pred, y_gt) : two of torch.tensor w/ shape(batch, 1d-wave)
output(loss) : torch.tensor(scalar)
48k: n_ffts=[2048, 1024, 512, 256]
24k: n_ffts=[1024, 512, 256, 128]
"""
def __init__(self, n_ffts, alpha=1.0, overlap=0.75, eps=1e-7):
super().__init__()
self.losses = nn.ModuleList([SSSLoss(n_fft, alpha, overlap, eps) for n_fft in n_ffts])
def forward(self, x_pred, x_true):
x_pred = x_pred[..., :x_true.shape[-1]]
value = 0.
for loss in self.losses:
value += loss(x_true, x_pred)
return value
class RSSLoss(nn.Module):
'''
Random-scale Spectral Loss.
'''
def __init__(self, fft_min, fft_max, n_scale, alpha=1.0, overlap=0, eps=1e-7, device='cuda'):
super().__init__()
self.fft_min = fft_min
self.fft_max = fft_max
self.n_scale = n_scale
self.lossdict = {}
for n_fft in range(fft_min, fft_max):
self.lossdict[n_fft] = SSSLoss(n_fft, alpha, overlap, eps).to(device)
def forward(self, x_pred, x_true):
value = 0.
n_ffts = torch.randint(self.fft_min, self.fft_max, (self.n_scale,))
for n_fft in n_ffts:
loss_func = self.lossdict[int(n_fft)]
value += loss_func(x_true, x_pred)
return value / self.n_scale