gokulsrinivasagan commited on
Commit
c7ea0d3
·
verified ·
1 Parent(s): f40e439

End of training

Browse files
README.md CHANGED
@@ -1,15 +1,33 @@
1
  ---
2
  library_name: transformers
 
 
3
  license: apache-2.0
4
  base_model: google/bert_uncased_L-2_H-128_A-2
5
  tags:
6
  - generated_from_trainer
 
 
7
  metrics:
8
  - matthews_correlation
9
  - accuracy
10
  model-index:
11
  - name: bert_uncased_L-2_H-128_A-2_cola
12
- results: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
  ---
14
 
15
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -17,11 +35,11 @@ should probably proofread and complete it, then remove this comment. -->
17
 
18
  # bert_uncased_L-2_H-128_A-2_cola
19
 
20
- This model is a fine-tuned version of [google/bert_uncased_L-2_H-128_A-2](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2) on an unknown dataset.
21
  It achieves the following results on the evaluation set:
22
- - Loss: 0.6423
23
- - Matthews Correlation: 0.0951
24
- - Accuracy: 0.6433
25
 
26
  ## Model description
27
 
 
1
  ---
2
  library_name: transformers
3
+ language:
4
+ - en
5
  license: apache-2.0
6
  base_model: google/bert_uncased_L-2_H-128_A-2
7
  tags:
8
  - generated_from_trainer
9
+ datasets:
10
+ - glue
11
  metrics:
12
  - matthews_correlation
13
  - accuracy
14
  model-index:
15
  - name: bert_uncased_L-2_H-128_A-2_cola
16
+ results:
17
+ - task:
18
+ name: Text Classification
19
+ type: text-classification
20
+ dataset:
21
+ name: GLUE COLA
22
+ type: glue
23
+ args: cola
24
+ metrics:
25
+ - name: Matthews Correlation
26
+ type: matthews_correlation
27
+ value: 0.00286100001416597
28
+ - name: Accuracy
29
+ type: accuracy
30
+ value: 0.690316379070282
31
  ---
32
 
33
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
35
 
36
  # bert_uncased_L-2_H-128_A-2_cola
37
 
38
+ This model is a fine-tuned version of [google/bert_uncased_L-2_H-128_A-2](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2) on the GLUE COLA dataset.
39
  It achieves the following results on the evaluation set:
40
+ - Loss: 0.6155
41
+ - Matthews Correlation: 0.0029
42
+ - Accuracy: 0.6903
43
 
44
  ## Model description
45
 
all_results.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 14.0,
3
+ "eval_accuracy": 0.690316379070282,
4
+ "eval_loss": 0.6154815554618835,
5
+ "eval_matthews_correlation": 0.00286100001416597,
6
+ "eval_runtime": 0.3429,
7
+ "eval_samples": 1043,
8
+ "eval_samples_per_second": 3041.787,
9
+ "eval_steps_per_second": 14.582,
10
+ "total_flos": 76047542753280.0,
11
+ "train_loss": 0.5838592072494891,
12
+ "train_runtime": 51.9503,
13
+ "train_samples": 8551,
14
+ "train_samples_per_second": 8229.977,
15
+ "train_steps_per_second": 32.724
16
+ }
eval_results.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 14.0,
3
+ "eval_accuracy": 0.690316379070282,
4
+ "eval_loss": 0.6154815554618835,
5
+ "eval_matthews_correlation": 0.00286100001416597,
6
+ "eval_runtime": 0.3429,
7
+ "eval_samples": 1043,
8
+ "eval_samples_per_second": 3041.787,
9
+ "eval_steps_per_second": 14.582
10
+ }
logs/events.out.tfevents.1733343247.ki-g0008.1759256.19 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:93b6cf1431ef3989332367b2274ed57fa66471ae428413b8c327d1fdcb700fcb
3
+ size 475
train_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 14.0,
3
+ "total_flos": 76047542753280.0,
4
+ "train_loss": 0.5838592072494891,
5
+ "train_runtime": 51.9503,
6
+ "train_samples": 8551,
7
+ "train_samples_per_second": 8229.977,
8
+ "train_steps_per_second": 32.724
9
+ }
trainer_state.json ADDED
@@ -0,0 +1,289 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.6154815554618835,
3
+ "best_model_checkpoint": "bert_uncased_L-2_H-128_A-2_cola/checkpoint-306",
4
+ "epoch": 14.0,
5
+ "eval_steps": 500,
6
+ "global_step": 476,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 1.0,
13
+ "grad_norm": 0.7980750799179077,
14
+ "learning_rate": 4.9e-05,
15
+ "loss": 0.6288,
16
+ "step": 34
17
+ },
18
+ {
19
+ "epoch": 1.0,
20
+ "eval_accuracy": 0.6912751793861389,
21
+ "eval_loss": 0.6190507411956787,
22
+ "eval_matthews_correlation": 0.0,
23
+ "eval_runtime": 0.3447,
24
+ "eval_samples_per_second": 3025.909,
25
+ "eval_steps_per_second": 14.506,
26
+ "step": 34
27
+ },
28
+ {
29
+ "epoch": 2.0,
30
+ "grad_norm": 0.6090947389602661,
31
+ "learning_rate": 4.8e-05,
32
+ "loss": 0.6087,
33
+ "step": 68
34
+ },
35
+ {
36
+ "epoch": 2.0,
37
+ "eval_accuracy": 0.6912751793861389,
38
+ "eval_loss": 0.6184253096580505,
39
+ "eval_matthews_correlation": 0.0,
40
+ "eval_runtime": 0.3757,
41
+ "eval_samples_per_second": 2776.472,
42
+ "eval_steps_per_second": 13.31,
43
+ "step": 68
44
+ },
45
+ {
46
+ "epoch": 3.0,
47
+ "grad_norm": 0.47841307520866394,
48
+ "learning_rate": 4.7e-05,
49
+ "loss": 0.6076,
50
+ "step": 102
51
+ },
52
+ {
53
+ "epoch": 3.0,
54
+ "eval_accuracy": 0.6912751793861389,
55
+ "eval_loss": 0.6176126003265381,
56
+ "eval_matthews_correlation": 0.0,
57
+ "eval_runtime": 0.349,
58
+ "eval_samples_per_second": 2988.761,
59
+ "eval_steps_per_second": 14.328,
60
+ "step": 102
61
+ },
62
+ {
63
+ "epoch": 4.0,
64
+ "grad_norm": 0.6182640194892883,
65
+ "learning_rate": 4.600000000000001e-05,
66
+ "loss": 0.6066,
67
+ "step": 136
68
+ },
69
+ {
70
+ "epoch": 4.0,
71
+ "eval_accuracy": 0.6912751793861389,
72
+ "eval_loss": 0.6168822646141052,
73
+ "eval_matthews_correlation": 0.0,
74
+ "eval_runtime": 0.3459,
75
+ "eval_samples_per_second": 3015.646,
76
+ "eval_steps_per_second": 14.457,
77
+ "step": 136
78
+ },
79
+ {
80
+ "epoch": 5.0,
81
+ "grad_norm": 0.6467083692550659,
82
+ "learning_rate": 4.5e-05,
83
+ "loss": 0.605,
84
+ "step": 170
85
+ },
86
+ {
87
+ "epoch": 5.0,
88
+ "eval_accuracy": 0.6912751793861389,
89
+ "eval_loss": 0.617020845413208,
90
+ "eval_matthews_correlation": 0.0,
91
+ "eval_runtime": 0.3409,
92
+ "eval_samples_per_second": 3059.228,
93
+ "eval_steps_per_second": 14.666,
94
+ "step": 170
95
+ },
96
+ {
97
+ "epoch": 6.0,
98
+ "grad_norm": 0.5165701508522034,
99
+ "learning_rate": 4.4000000000000006e-05,
100
+ "loss": 0.6018,
101
+ "step": 204
102
+ },
103
+ {
104
+ "epoch": 6.0,
105
+ "eval_accuracy": 0.6912751793861389,
106
+ "eval_loss": 0.6163738369941711,
107
+ "eval_matthews_correlation": 0.0,
108
+ "eval_runtime": 0.3546,
109
+ "eval_samples_per_second": 2941.145,
110
+ "eval_steps_per_second": 14.099,
111
+ "step": 204
112
+ },
113
+ {
114
+ "epoch": 7.0,
115
+ "grad_norm": 0.9088634848594666,
116
+ "learning_rate": 4.3e-05,
117
+ "loss": 0.5976,
118
+ "step": 238
119
+ },
120
+ {
121
+ "epoch": 7.0,
122
+ "eval_accuracy": 0.6912751793861389,
123
+ "eval_loss": 0.6163157820701599,
124
+ "eval_matthews_correlation": 0.0,
125
+ "eval_runtime": 0.3505,
126
+ "eval_samples_per_second": 2975.791,
127
+ "eval_steps_per_second": 14.266,
128
+ "step": 238
129
+ },
130
+ {
131
+ "epoch": 8.0,
132
+ "grad_norm": 0.8111366629600525,
133
+ "learning_rate": 4.2e-05,
134
+ "loss": 0.5871,
135
+ "step": 272
136
+ },
137
+ {
138
+ "epoch": 8.0,
139
+ "eval_accuracy": 0.6922339200973511,
140
+ "eval_loss": 0.6158953905105591,
141
+ "eval_matthews_correlation": 0.0463559874942472,
142
+ "eval_runtime": 0.3419,
143
+ "eval_samples_per_second": 3050.899,
144
+ "eval_steps_per_second": 14.626,
145
+ "step": 272
146
+ },
147
+ {
148
+ "epoch": 9.0,
149
+ "grad_norm": 1.0843596458435059,
150
+ "learning_rate": 4.1e-05,
151
+ "loss": 0.5824,
152
+ "step": 306
153
+ },
154
+ {
155
+ "epoch": 9.0,
156
+ "eval_accuracy": 0.690316379070282,
157
+ "eval_loss": 0.6154815554618835,
158
+ "eval_matthews_correlation": 0.00286100001416597,
159
+ "eval_runtime": 0.3389,
160
+ "eval_samples_per_second": 3077.666,
161
+ "eval_steps_per_second": 14.754,
162
+ "step": 306
163
+ },
164
+ {
165
+ "epoch": 10.0,
166
+ "grad_norm": 1.03415048122406,
167
+ "learning_rate": 4e-05,
168
+ "loss": 0.5711,
169
+ "step": 340
170
+ },
171
+ {
172
+ "epoch": 10.0,
173
+ "eval_accuracy": 0.6701821684837341,
174
+ "eval_loss": 0.6198194622993469,
175
+ "eval_matthews_correlation": 0.01981741616477915,
176
+ "eval_runtime": 0.362,
177
+ "eval_samples_per_second": 2881.555,
178
+ "eval_steps_per_second": 13.814,
179
+ "step": 340
180
+ },
181
+ {
182
+ "epoch": 11.0,
183
+ "grad_norm": 1.5267772674560547,
184
+ "learning_rate": 3.9000000000000006e-05,
185
+ "loss": 0.5591,
186
+ "step": 374
187
+ },
188
+ {
189
+ "epoch": 11.0,
190
+ "eval_accuracy": 0.6720997095108032,
191
+ "eval_loss": 0.6221288442611694,
192
+ "eval_matthews_correlation": 0.06852522805215415,
193
+ "eval_runtime": 0.3482,
194
+ "eval_samples_per_second": 2995.172,
195
+ "eval_steps_per_second": 14.358,
196
+ "step": 374
197
+ },
198
+ {
199
+ "epoch": 12.0,
200
+ "grad_norm": 2.8010520935058594,
201
+ "learning_rate": 3.8e-05,
202
+ "loss": 0.5496,
203
+ "step": 408
204
+ },
205
+ {
206
+ "epoch": 12.0,
207
+ "eval_accuracy": 0.6701821684837341,
208
+ "eval_loss": 0.6283519864082336,
209
+ "eval_matthews_correlation": 0.12403836789999605,
210
+ "eval_runtime": 0.3537,
211
+ "eval_samples_per_second": 2948.641,
212
+ "eval_steps_per_second": 14.135,
213
+ "step": 408
214
+ },
215
+ {
216
+ "epoch": 13.0,
217
+ "grad_norm": 3.0384879112243652,
218
+ "learning_rate": 3.7e-05,
219
+ "loss": 0.5397,
220
+ "step": 442
221
+ },
222
+ {
223
+ "epoch": 13.0,
224
+ "eval_accuracy": 0.6548417806625366,
225
+ "eval_loss": 0.6349678635597229,
226
+ "eval_matthews_correlation": 0.10955495195400314,
227
+ "eval_runtime": 0.3501,
228
+ "eval_samples_per_second": 2978.893,
229
+ "eval_steps_per_second": 14.28,
230
+ "step": 442
231
+ },
232
+ {
233
+ "epoch": 14.0,
234
+ "grad_norm": 3.0345466136932373,
235
+ "learning_rate": 3.6e-05,
236
+ "loss": 0.529,
237
+ "step": 476
238
+ },
239
+ {
240
+ "epoch": 14.0,
241
+ "eval_accuracy": 0.6433365345001221,
242
+ "eval_loss": 0.6423426270484924,
243
+ "eval_matthews_correlation": 0.09507792970617555,
244
+ "eval_runtime": 0.3493,
245
+ "eval_samples_per_second": 2985.586,
246
+ "eval_steps_per_second": 14.312,
247
+ "step": 476
248
+ },
249
+ {
250
+ "epoch": 14.0,
251
+ "step": 476,
252
+ "total_flos": 76047542753280.0,
253
+ "train_loss": 0.5838592072494891,
254
+ "train_runtime": 51.9503,
255
+ "train_samples_per_second": 8229.977,
256
+ "train_steps_per_second": 32.724
257
+ }
258
+ ],
259
+ "logging_steps": 1,
260
+ "max_steps": 1700,
261
+ "num_input_tokens_seen": 0,
262
+ "num_train_epochs": 50,
263
+ "save_steps": 500,
264
+ "stateful_callbacks": {
265
+ "EarlyStoppingCallback": {
266
+ "args": {
267
+ "early_stopping_patience": 5,
268
+ "early_stopping_threshold": 0.0
269
+ },
270
+ "attributes": {
271
+ "early_stopping_patience_counter": 5
272
+ }
273
+ },
274
+ "TrainerControl": {
275
+ "args": {
276
+ "should_epoch_stop": false,
277
+ "should_evaluate": false,
278
+ "should_log": false,
279
+ "should_save": true,
280
+ "should_training_stop": true
281
+ },
282
+ "attributes": {}
283
+ }
284
+ },
285
+ "total_flos": 76047542753280.0,
286
+ "train_batch_size": 256,
287
+ "trial_name": null,
288
+ "trial_params": null
289
+ }