update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- glue
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: mobilebert_sa_GLUE_Experiment_logit_kd_pretrain_sst2
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Text Classification
|
14 |
+
type: text-classification
|
15 |
+
dataset:
|
16 |
+
name: glue
|
17 |
+
type: glue
|
18 |
+
config: sst2
|
19 |
+
split: validation
|
20 |
+
args: sst2
|
21 |
+
metrics:
|
22 |
+
- name: Accuracy
|
23 |
+
type: accuracy
|
24 |
+
value: 0.9208715596330275
|
25 |
+
---
|
26 |
+
|
27 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
28 |
+
should probably proofread and complete it, then remove this comment. -->
|
29 |
+
|
30 |
+
# mobilebert_sa_GLUE_Experiment_logit_kd_pretrain_sst2
|
31 |
+
|
32 |
+
This model is a fine-tuned version of [gokuls/mobilebert_sa_pre-training-complete](https://huggingface.co/gokuls/mobilebert_sa_pre-training-complete) on the glue dataset.
|
33 |
+
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.2677
|
35 |
+
- Accuracy: 0.9209
|
36 |
+
|
37 |
+
## Model description
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Intended uses & limitations
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Training and evaluation data
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training procedure
|
50 |
+
|
51 |
+
### Training hyperparameters
|
52 |
+
|
53 |
+
The following hyperparameters were used during training:
|
54 |
+
- learning_rate: 5e-05
|
55 |
+
- train_batch_size: 128
|
56 |
+
- eval_batch_size: 128
|
57 |
+
- seed: 10
|
58 |
+
- distributed_type: multi-GPU
|
59 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
+
- lr_scheduler_type: linear
|
61 |
+
- num_epochs: 50
|
62 |
+
|
63 |
+
### Training results
|
64 |
+
|
65 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
66 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
|
67 |
+
| 0.4176 | 1.0 | 527 | 0.2978 | 0.9197 |
|
68 |
+
| 0.1807 | 2.0 | 1054 | 0.2951 | 0.9174 |
|
69 |
+
| 0.1163 | 3.0 | 1581 | 0.2749 | 0.9186 |
|
70 |
+
| 0.0862 | 4.0 | 2108 | 0.2988 | 0.9083 |
|
71 |
+
| 0.0695 | 5.0 | 2635 | 0.2760 | 0.9174 |
|
72 |
+
| 0.0598 | 6.0 | 3162 | 0.2695 | 0.9151 |
|
73 |
+
| 0.0525 | 7.0 | 3689 | 0.2723 | 0.9255 |
|
74 |
+
| 0.0464 | 8.0 | 4216 | 0.2430 | 0.9243 |
|
75 |
+
| 0.0422 | 9.0 | 4743 | 0.2814 | 0.9243 |
|
76 |
+
| 0.0395 | 10.0 | 5270 | 0.2464 | 0.9163 |
|
77 |
+
| 0.0357 | 11.0 | 5797 | 0.2390 | 0.9197 |
|
78 |
+
| 0.0341 | 12.0 | 6324 | 0.2713 | 0.9197 |
|
79 |
+
| 0.0328 | 13.0 | 6851 | 0.2685 | 0.9220 |
|
80 |
+
| 0.0315 | 14.0 | 7378 | 0.2585 | 0.9186 |
|
81 |
+
| 0.0296 | 15.0 | 7905 | 0.2367 | 0.9220 |
|
82 |
+
| 0.0283 | 16.0 | 8432 | 0.2560 | 0.9186 |
|
83 |
+
| 0.0277 | 17.0 | 8959 | 0.2635 | 0.9174 |
|
84 |
+
| 0.0269 | 18.0 | 9486 | 0.2364 | 0.9266 |
|
85 |
+
| 0.026 | 19.0 | 10013 | 0.2749 | 0.9209 |
|
86 |
+
| 0.0252 | 20.0 | 10540 | 0.2507 | 0.9174 |
|
87 |
+
| 0.0248 | 21.0 | 11067 | 0.2769 | 0.9163 |
|
88 |
+
| 0.0248 | 22.0 | 11594 | 0.2543 | 0.9220 |
|
89 |
+
| 0.024 | 23.0 | 12121 | 0.2677 | 0.9209 |
|
90 |
+
|
91 |
+
|
92 |
+
### Framework versions
|
93 |
+
|
94 |
+
- Transformers 4.26.0
|
95 |
+
- Pytorch 1.14.0a0+410ce96
|
96 |
+
- Datasets 2.9.0
|
97 |
+
- Tokenizers 0.13.2
|