gokuls commited on
Commit
0d79fcc
·
1 Parent(s): 363ac01

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +79 -0
README.md ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ datasets:
5
+ - glue
6
+ metrics:
7
+ - accuracy
8
+ model-index:
9
+ - name: hBERTv2_new_pretrain_48_mnli
10
+ results:
11
+ - task:
12
+ name: Text Classification
13
+ type: text-classification
14
+ dataset:
15
+ name: glue
16
+ type: glue
17
+ config: mnli
18
+ split: validation_matched
19
+ args: mnli
20
+ metrics:
21
+ - name: Accuracy
22
+ type: accuracy
23
+ value: 0.3544574630667346
24
+ ---
25
+
26
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
27
+ should probably proofread and complete it, then remove this comment. -->
28
+
29
+ # hBERTv2_new_pretrain_48_mnli
30
+
31
+ This model is a fine-tuned version of [gokuls/bert_12_layer_model_v2_complete_training_new_48](https://huggingface.co/gokuls/bert_12_layer_model_v2_complete_training_new_48) on the glue dataset.
32
+ It achieves the following results on the evaluation set:
33
+ - Loss: 1.1002
34
+ - Accuracy: 0.3545
35
+
36
+ ## Model description
37
+
38
+ More information needed
39
+
40
+ ## Intended uses & limitations
41
+
42
+ More information needed
43
+
44
+ ## Training and evaluation data
45
+
46
+ More information needed
47
+
48
+ ## Training procedure
49
+
50
+ ### Training hyperparameters
51
+
52
+ The following hyperparameters were used during training:
53
+ - learning_rate: 4e-05
54
+ - train_batch_size: 128
55
+ - eval_batch_size: 128
56
+ - seed: 10
57
+ - distributed_type: multi-GPU
58
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
59
+ - lr_scheduler_type: linear
60
+ - num_epochs: 50
61
+
62
+ ### Training results
63
+
64
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
65
+ |:-------------:|:-----:|:-----:|:---------------:|:--------:|
66
+ | 1.1 | 1.0 | 3068 | 1.0922 | 0.3482 |
67
+ | 1.0893 | 2.0 | 6136 | 1.0962 | 0.3612 |
68
+ | 1.0894 | 3.0 | 9204 | 1.0967 | 0.3274 |
69
+ | 1.0995 | 4.0 | 12272 | 1.0970 | 0.3182 |
70
+ | 1.0987 | 5.0 | 15340 | 1.1010 | 0.3545 |
71
+ | 1.099 | 6.0 | 18408 | 1.1002 | 0.3545 |
72
+
73
+
74
+ ### Framework versions
75
+
76
+ - Transformers 4.29.2
77
+ - Pytorch 1.14.0a0+410ce96
78
+ - Datasets 2.12.0
79
+ - Tokenizers 0.13.3