gokuls commited on
Commit
285f95f
1 Parent(s): d5b9e3a

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +22 -19
README.md CHANGED
@@ -1,6 +1,4 @@
1
  ---
2
- language:
3
- - en
4
  tags:
5
  - generated_from_trainer
6
  datasets:
@@ -14,7 +12,7 @@ model-index:
14
  name: Text Classification
15
  type: text-classification
16
  dataset:
17
- name: GLUE WNLI
18
  type: glue
19
  config: wnli
20
  split: validation
@@ -22,7 +20,7 @@ model-index:
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
- value: 0.5633802816901409
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -30,10 +28,10 @@ should probably proofread and complete it, then remove this comment. -->
30
 
31
  # hBERTv2_new_no_pretrain_wnli
32
 
33
- This model is a fine-tuned version of [](https://huggingface.co/) on the GLUE WNLI dataset.
34
  It achieves the following results on the evaluation set:
35
- - Loss: 0.6916
36
- - Accuracy: 0.5634
37
 
38
  ## Model description
39
 
@@ -52,7 +50,7 @@ More information needed
52
  ### Training hyperparameters
53
 
54
  The following hyperparameters were used during training:
55
- - learning_rate: 0.0005
56
  - train_batch_size: 128
57
  - eval_batch_size: 128
58
  - seed: 10
@@ -60,26 +58,31 @@ The following hyperparameters were used during training:
60
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
  - lr_scheduler_type: linear
62
  - num_epochs: 50
63
- - mixed_precision_training: Native AMP
64
 
65
  ### Training results
66
 
67
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
69
- | 2.018 | 1.0 | 5 | 7.0853 | 0.4366 |
70
- | 2.2331 | 2.0 | 10 | 0.8570 | 0.4366 |
71
- | 0.7865 | 3.0 | 15 | 0.6971 | 0.4366 |
72
- | 0.7062 | 4.0 | 20 | 0.6916 | 0.5634 |
73
- | 0.7223 | 5.0 | 25 | 0.7215 | 0.4366 |
74
- | 0.7916 | 6.0 | 30 | 0.8004 | 0.5634 |
75
- | 0.7638 | 7.0 | 35 | 0.7273 | 0.4366 |
76
- | 0.7096 | 8.0 | 40 | 0.7280 | 0.4366 |
77
- | 0.7084 | 9.0 | 45 | 0.7077 | 0.4366 |
 
 
 
 
 
 
78
 
79
 
80
  ### Framework versions
81
 
82
- - Transformers 4.29.2
83
  - Pytorch 1.14.0a0+410ce96
84
  - Datasets 2.12.0
85
  - Tokenizers 0.13.3
 
1
  ---
 
 
2
  tags:
3
  - generated_from_trainer
4
  datasets:
 
12
  name: Text Classification
13
  type: text-classification
14
  dataset:
15
+ name: glue
16
  type: glue
17
  config: wnli
18
  split: validation
 
20
  metrics:
21
  - name: Accuracy
22
  type: accuracy
23
+ value: 0.352112676056338
24
  ---
25
 
26
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
28
 
29
  # hBERTv2_new_no_pretrain_wnli
30
 
31
+ This model is a fine-tuned version of [](https://huggingface.co/) on the glue dataset.
32
  It achieves the following results on the evaluation set:
33
+ - Loss: 0.6976
34
+ - Accuracy: 0.3521
35
 
36
  ## Model description
37
 
 
50
  ### Training hyperparameters
51
 
52
  The following hyperparameters were used during training:
53
+ - learning_rate: 4e-05
54
  - train_batch_size: 128
55
  - eval_batch_size: 128
56
  - seed: 10
 
58
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
59
  - lr_scheduler_type: linear
60
  - num_epochs: 50
 
61
 
62
  ### Training results
63
 
64
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
65
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
66
+ | 0.9765 | 1.0 | 5 | 0.6952 | 0.4366 |
67
+ | 0.723 | 2.0 | 10 | 0.6938 | 0.4648 |
68
+ | 0.7209 | 3.0 | 15 | 0.6902 | 0.5634 |
69
+ | 0.7183 | 4.0 | 20 | 0.7155 | 0.5634 |
70
+ | 0.7155 | 5.0 | 25 | 0.6875 | 0.5634 |
71
+ | 0.7027 | 6.0 | 30 | 0.6978 | 0.4366 |
72
+ | 0.6966 | 7.0 | 35 | 0.7161 | 0.4366 |
73
+ | 0.7077 | 8.0 | 40 | 0.6926 | 0.5634 |
74
+ | 0.7048 | 9.0 | 45 | 0.7409 | 0.4366 |
75
+ | 0.7386 | 10.0 | 50 | 0.6874 | 0.5634 |
76
+ | 0.7104 | 11.0 | 55 | 0.6875 | 0.5634 |
77
+ | 0.7061 | 12.0 | 60 | 0.7088 | 0.4366 |
78
+ | 0.6951 | 13.0 | 65 | 0.7009 | 0.4507 |
79
+ | 0.6995 | 14.0 | 70 | 0.7050 | 0.4366 |
80
+ | 0.692 | 15.0 | 75 | 0.6976 | 0.3521 |
81
 
82
 
83
  ### Framework versions
84
 
85
+ - Transformers 4.30.2
86
  - Pytorch 1.14.0a0+410ce96
87
  - Datasets 2.12.0
88
  - Tokenizers 0.13.3