gokuls commited on
Commit
ffa1bc0
·
1 Parent(s): 92cf975

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +15 -17
README.md CHANGED
@@ -1,6 +1,4 @@
1
  ---
2
- language:
3
- - en
4
  tags:
5
  - generated_from_trainer
6
  datasets:
@@ -15,7 +13,7 @@ model-index:
15
  name: Text Classification
16
  type: text-classification
17
  dataset:
18
- name: GLUE MRPC
19
  type: glue
20
  config: mrpc
21
  split: validation
@@ -26,7 +24,7 @@ model-index:
26
  value: 0.6838235294117647
27
  - name: F1
28
  type: f1
29
- value: 0.8122270742358079
30
  ---
31
 
32
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -34,12 +32,12 @@ should probably proofread and complete it, then remove this comment. -->
34
 
35
  # hBERTv2_new_no_pretrain_mrpc
36
 
37
- This model is a fine-tuned version of [](https://huggingface.co/) on the GLUE MRPC dataset.
38
  It achieves the following results on the evaluation set:
39
- - Loss: 0.6242
40
  - Accuracy: 0.6838
41
- - F1: 0.8122
42
- - Combined Score: 0.7480
43
 
44
  ## Model description
45
 
@@ -58,7 +56,7 @@ More information needed
58
  ### Training hyperparameters
59
 
60
  The following hyperparameters were used during training:
61
- - learning_rate: 0.0005
62
  - train_batch_size: 128
63
  - eval_batch_size: 128
64
  - seed: 10
@@ -66,23 +64,23 @@ The following hyperparameters were used during training:
66
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
67
  - lr_scheduler_type: linear
68
  - num_epochs: 50
69
- - mixed_precision_training: Native AMP
70
 
71
  ### Training results
72
 
73
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score |
74
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:|
75
- | 1.2542 | 1.0 | 29 | 0.6242 | 0.6838 | 0.8122 | 0.7480 |
76
- | 0.6656 | 2.0 | 58 | 0.6247 | 0.6838 | 0.8122 | 0.7480 |
77
- | 0.648 | 3.0 | 87 | 0.6309 | 0.6838 | 0.8122 | 0.7480 |
78
- | 0.6448 | 4.0 | 116 | 0.6373 | 0.6838 | 0.8122 | 0.7480 |
79
- | 0.6423 | 5.0 | 145 | 0.6279 | 0.6838 | 0.8122 | 0.7480 |
80
- | 0.6323 | 6.0 | 174 | 0.6351 | 0.6838 | 0.8122 | 0.7480 |
 
81
 
82
 
83
  ### Framework versions
84
 
85
- - Transformers 4.29.2
86
  - Pytorch 1.14.0a0+410ce96
87
  - Datasets 2.12.0
88
  - Tokenizers 0.13.3
 
1
  ---
 
 
2
  tags:
3
  - generated_from_trainer
4
  datasets:
 
13
  name: Text Classification
14
  type: text-classification
15
  dataset:
16
+ name: glue
17
  type: glue
18
  config: mrpc
19
  split: validation
 
24
  value: 0.6838235294117647
25
  - name: F1
26
  type: f1
27
+ value: 0.7867768595041322
28
  ---
29
 
30
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
32
 
33
  # hBERTv2_new_no_pretrain_mrpc
34
 
35
+ This model is a fine-tuned version of [](https://huggingface.co/) on the glue dataset.
36
  It achieves the following results on the evaluation set:
37
+ - Loss: 1.1249
38
  - Accuracy: 0.6838
39
+ - F1: 0.7868
40
+ - Combined Score: 0.7353
41
 
42
  ## Model description
43
 
 
56
  ### Training hyperparameters
57
 
58
  The following hyperparameters were used during training:
59
+ - learning_rate: 4e-05
60
  - train_batch_size: 128
61
  - eval_batch_size: 128
62
  - seed: 10
 
64
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
65
  - lr_scheduler_type: linear
66
  - num_epochs: 50
 
67
 
68
  ### Training results
69
 
70
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score |
71
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:|
72
+ | 0.6685 | 1.0 | 29 | 0.6107 | 0.6838 | 0.8122 | 0.7480 |
73
+ | 0.6337 | 2.0 | 58 | 0.5914 | 0.6838 | 0.7896 | 0.7367 |
74
+ | 0.529 | 3.0 | 87 | 0.6385 | 0.6642 | 0.7705 | 0.7174 |
75
+ | 0.4182 | 4.0 | 116 | 0.6619 | 0.6985 | 0.8051 | 0.7518 |
76
+ | 0.3095 | 5.0 | 145 | 1.0040 | 0.6471 | 0.7568 | 0.7019 |
77
+ | 0.2219 | 6.0 | 174 | 0.9458 | 0.6225 | 0.7094 | 0.6660 |
78
+ | 0.1813 | 7.0 | 203 | 1.1249 | 0.6838 | 0.7868 | 0.7353 |
79
 
80
 
81
  ### Framework versions
82
 
83
+ - Transformers 4.30.2
84
  - Pytorch 1.14.0a0+410ce96
85
  - Datasets 2.12.0
86
  - Tokenizers 0.13.3