update model card README.md
Browse files
README.md
CHANGED
@@ -1,6 +1,4 @@
|
|
1 |
---
|
2 |
-
language:
|
3 |
-
- en
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
datasets:
|
@@ -15,7 +13,7 @@ model-index:
|
|
15 |
name: Text Classification
|
16 |
type: text-classification
|
17 |
dataset:
|
18 |
-
name:
|
19 |
type: glue
|
20 |
config: mrpc
|
21 |
split: validation
|
@@ -26,7 +24,7 @@ model-index:
|
|
26 |
value: 0.6838235294117647
|
27 |
- name: F1
|
28 |
type: f1
|
29 |
-
value: 0.
|
30 |
---
|
31 |
|
32 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -34,12 +32,12 @@ should probably proofread and complete it, then remove this comment. -->
|
|
34 |
|
35 |
# hBERTv2_new_no_pretrain_mrpc
|
36 |
|
37 |
-
This model is a fine-tuned version of [](https://huggingface.co/) on the
|
38 |
It achieves the following results on the evaluation set:
|
39 |
-
- Loss:
|
40 |
- Accuracy: 0.6838
|
41 |
-
- F1: 0.
|
42 |
-
- Combined Score: 0.
|
43 |
|
44 |
## Model description
|
45 |
|
@@ -58,7 +56,7 @@ More information needed
|
|
58 |
### Training hyperparameters
|
59 |
|
60 |
The following hyperparameters were used during training:
|
61 |
-
- learning_rate:
|
62 |
- train_batch_size: 128
|
63 |
- eval_batch_size: 128
|
64 |
- seed: 10
|
@@ -66,23 +64,23 @@ The following hyperparameters were used during training:
|
|
66 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
67 |
- lr_scheduler_type: linear
|
68 |
- num_epochs: 50
|
69 |
-
- mixed_precision_training: Native AMP
|
70 |
|
71 |
### Training results
|
72 |
|
73 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score |
|
74 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:|
|
75 |
-
|
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
|
|
81 |
|
82 |
|
83 |
### Framework versions
|
84 |
|
85 |
-
- Transformers 4.
|
86 |
- Pytorch 1.14.0a0+410ce96
|
87 |
- Datasets 2.12.0
|
88 |
- Tokenizers 0.13.3
|
|
|
1 |
---
|
|
|
|
|
2 |
tags:
|
3 |
- generated_from_trainer
|
4 |
datasets:
|
|
|
13 |
name: Text Classification
|
14 |
type: text-classification
|
15 |
dataset:
|
16 |
+
name: glue
|
17 |
type: glue
|
18 |
config: mrpc
|
19 |
split: validation
|
|
|
24 |
value: 0.6838235294117647
|
25 |
- name: F1
|
26 |
type: f1
|
27 |
+
value: 0.7867768595041322
|
28 |
---
|
29 |
|
30 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
32 |
|
33 |
# hBERTv2_new_no_pretrain_mrpc
|
34 |
|
35 |
+
This model is a fine-tuned version of [](https://huggingface.co/) on the glue dataset.
|
36 |
It achieves the following results on the evaluation set:
|
37 |
+
- Loss: 1.1249
|
38 |
- Accuracy: 0.6838
|
39 |
+
- F1: 0.7868
|
40 |
+
- Combined Score: 0.7353
|
41 |
|
42 |
## Model description
|
43 |
|
|
|
56 |
### Training hyperparameters
|
57 |
|
58 |
The following hyperparameters were used during training:
|
59 |
+
- learning_rate: 4e-05
|
60 |
- train_batch_size: 128
|
61 |
- eval_batch_size: 128
|
62 |
- seed: 10
|
|
|
64 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
65 |
- lr_scheduler_type: linear
|
66 |
- num_epochs: 50
|
|
|
67 |
|
68 |
### Training results
|
69 |
|
70 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score |
|
71 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:|
|
72 |
+
| 0.6685 | 1.0 | 29 | 0.6107 | 0.6838 | 0.8122 | 0.7480 |
|
73 |
+
| 0.6337 | 2.0 | 58 | 0.5914 | 0.6838 | 0.7896 | 0.7367 |
|
74 |
+
| 0.529 | 3.0 | 87 | 0.6385 | 0.6642 | 0.7705 | 0.7174 |
|
75 |
+
| 0.4182 | 4.0 | 116 | 0.6619 | 0.6985 | 0.8051 | 0.7518 |
|
76 |
+
| 0.3095 | 5.0 | 145 | 1.0040 | 0.6471 | 0.7568 | 0.7019 |
|
77 |
+
| 0.2219 | 6.0 | 174 | 0.9458 | 0.6225 | 0.7094 | 0.6660 |
|
78 |
+
| 0.1813 | 7.0 | 203 | 1.1249 | 0.6838 | 0.7868 | 0.7353 |
|
79 |
|
80 |
|
81 |
### Framework versions
|
82 |
|
83 |
+
- Transformers 4.30.2
|
84 |
- Pytorch 1.14.0a0+410ce96
|
85 |
- Datasets 2.12.0
|
86 |
- Tokenizers 0.13.3
|