gokuls commited on
Commit
30316e0
·
1 Parent(s): 0b2ed7d

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +81 -0
README.md ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ datasets:
5
+ - glue
6
+ metrics:
7
+ - accuracy
8
+ model-index:
9
+ - name: hBERTv1_new_pretrain_w_init__qnli
10
+ results:
11
+ - task:
12
+ name: Text Classification
13
+ type: text-classification
14
+ dataset:
15
+ name: glue
16
+ type: glue
17
+ config: qnli
18
+ split: validation
19
+ args: qnli
20
+ metrics:
21
+ - name: Accuracy
22
+ type: accuracy
23
+ value: 0.5053999633900788
24
+ ---
25
+
26
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
27
+ should probably proofread and complete it, then remove this comment. -->
28
+
29
+ # hBERTv1_new_pretrain_w_init__qnli
30
+
31
+ This model is a fine-tuned version of [gokuls/bert_12_layer_model_v1_complete_training_new_wt_init](https://huggingface.co/gokuls/bert_12_layer_model_v1_complete_training_new_wt_init) on the glue dataset.
32
+ It achieves the following results on the evaluation set:
33
+ - Loss: 0.6933
34
+ - Accuracy: 0.5054
35
+
36
+ ## Model description
37
+
38
+ More information needed
39
+
40
+ ## Intended uses & limitations
41
+
42
+ More information needed
43
+
44
+ ## Training and evaluation data
45
+
46
+ More information needed
47
+
48
+ ## Training procedure
49
+
50
+ ### Training hyperparameters
51
+
52
+ The following hyperparameters were used during training:
53
+ - learning_rate: 0.0005
54
+ - train_batch_size: 128
55
+ - eval_batch_size: 128
56
+ - seed: 10
57
+ - distributed_type: multi-GPU
58
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
59
+ - lr_scheduler_type: linear
60
+ - num_epochs: 50
61
+
62
+ ### Training results
63
+
64
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
65
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
66
+ | 0.8188 | 1.0 | 819 | 0.6932 | 0.5054 |
67
+ | 0.6937 | 2.0 | 1638 | 0.6934 | 0.4946 |
68
+ | 0.6932 | 3.0 | 2457 | 0.6914 | 0.5054 |
69
+ | 0.6932 | 4.0 | 3276 | 0.6934 | 0.4946 |
70
+ | 0.6932 | 5.0 | 4095 | 0.6933 | 0.5054 |
71
+ | 0.6932 | 6.0 | 4914 | 0.6933 | 0.5054 |
72
+ | 0.6932 | 7.0 | 5733 | 0.6933 | 0.5054 |
73
+ | 0.6931 | 8.0 | 6552 | 0.6933 | 0.5054 |
74
+
75
+
76
+ ### Framework versions
77
+
78
+ - Transformers 4.29.2
79
+ - Pytorch 1.14.0a0+410ce96
80
+ - Datasets 2.12.0
81
+ - Tokenizers 0.13.3