gokuls commited on
Commit
4c55df1
1 Parent(s): a89d7b7

End of training

Browse files
Files changed (5) hide show
  1. README.md +7 -5
  2. all_results.json +14 -0
  3. eval_results.json +9 -0
  4. train_results.json +8 -0
  5. trainer_state.json +163 -0
README.md CHANGED
@@ -1,4 +1,6 @@
1
  ---
 
 
2
  base_model: gokuls/bert_12_layer_model_v1_complete_training_new_wt_init_48
3
  tags:
4
  - generated_from_trainer
@@ -13,7 +15,7 @@ model-index:
13
  name: Text Classification
14
  type: text-classification
15
  dataset:
16
- name: glue
17
  type: glue
18
  config: qnli
19
  split: validation
@@ -21,7 +23,7 @@ model-index:
21
  metrics:
22
  - name: Accuracy
23
  type: accuracy
24
- value: 0.4946000366099213
25
  ---
26
 
27
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -29,10 +31,10 @@ should probably proofread and complete it, then remove this comment. -->
29
 
30
  # hBERTv1_new_pretrain_w_init_48_ver2_qnli
31
 
32
- This model is a fine-tuned version of [gokuls/bert_12_layer_model_v1_complete_training_new_wt_init_48](https://huggingface.co/gokuls/bert_12_layer_model_v1_complete_training_new_wt_init_48) on the glue dataset.
33
  It achieves the following results on the evaluation set:
34
- - Loss: 0.6932
35
- - Accuracy: 0.4946
36
 
37
  ## Model description
38
 
 
1
  ---
2
+ language:
3
+ - en
4
  base_model: gokuls/bert_12_layer_model_v1_complete_training_new_wt_init_48
5
  tags:
6
  - generated_from_trainer
 
15
  name: Text Classification
16
  type: text-classification
17
  dataset:
18
+ name: GLUE QNLI
19
  type: glue
20
  config: qnli
21
  split: validation
 
23
  metrics:
24
  - name: Accuracy
25
  type: accuracy
26
+ value: 0.5053999633900788
27
  ---
28
 
29
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
31
 
32
  # hBERTv1_new_pretrain_w_init_48_ver2_qnli
33
 
34
+ This model is a fine-tuned version of [gokuls/bert_12_layer_model_v1_complete_training_new_wt_init_48](https://huggingface.co/gokuls/bert_12_layer_model_v1_complete_training_new_wt_init_48) on the GLUE QNLI dataset.
35
  It achieves the following results on the evaluation set:
36
+ - Loss: 0.6931
37
+ - Accuracy: 0.5054
38
 
39
  ## Model description
40
 
all_results.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 9.0,
3
+ "eval_accuracy": 0.5053999633900788,
4
+ "eval_loss": 0.6930912137031555,
5
+ "eval_runtime": 27.8378,
6
+ "eval_samples": 5463,
7
+ "eval_samples_per_second": 196.244,
8
+ "eval_steps_per_second": 3.089,
9
+ "train_loss": 0.6947647454110246,
10
+ "train_runtime": 15057.6981,
11
+ "train_samples": 104743,
12
+ "train_samples_per_second": 104.342,
13
+ "train_steps_per_second": 1.631
14
+ }
eval_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 9.0,
3
+ "eval_accuracy": 0.5053999633900788,
4
+ "eval_loss": 0.6930912137031555,
5
+ "eval_runtime": 27.8378,
6
+ "eval_samples": 5463,
7
+ "eval_samples_per_second": 196.244,
8
+ "eval_steps_per_second": 3.089
9
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 9.0,
3
+ "train_loss": 0.6947647454110246,
4
+ "train_runtime": 15057.6981,
5
+ "train_samples": 104743,
6
+ "train_samples_per_second": 104.342,
7
+ "train_steps_per_second": 1.631
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,163 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.6930912137031555,
3
+ "best_model_checkpoint": "hBERTv1_new_pretrain_w_init_48_ver2_qnli/checkpoint-6548",
4
+ "epoch": 9.0,
5
+ "eval_steps": 500,
6
+ "global_step": 14733,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 1.0,
13
+ "learning_rate": 3.733333333333334e-05,
14
+ "loss": 0.7034,
15
+ "step": 1637
16
+ },
17
+ {
18
+ "epoch": 1.0,
19
+ "eval_accuracy": 0.5053999633900788,
20
+ "eval_loss": 0.6952020525932312,
21
+ "eval_runtime": 28.6895,
22
+ "eval_samples_per_second": 190.418,
23
+ "eval_steps_per_second": 2.998,
24
+ "step": 1637
25
+ },
26
+ {
27
+ "epoch": 2.0,
28
+ "learning_rate": 3.466666666666667e-05,
29
+ "loss": 0.6953,
30
+ "step": 3274
31
+ },
32
+ {
33
+ "epoch": 2.0,
34
+ "eval_accuracy": 0.4946000366099213,
35
+ "eval_loss": 0.6949925422668457,
36
+ "eval_runtime": 28.691,
37
+ "eval_samples_per_second": 190.408,
38
+ "eval_steps_per_second": 2.997,
39
+ "step": 3274
40
+ },
41
+ {
42
+ "epoch": 3.0,
43
+ "learning_rate": 3.2000000000000005e-05,
44
+ "loss": 0.694,
45
+ "step": 4911
46
+ },
47
+ {
48
+ "epoch": 3.0,
49
+ "eval_accuracy": 0.4946000366099213,
50
+ "eval_loss": 0.6932231783866882,
51
+ "eval_runtime": 28.6639,
52
+ "eval_samples_per_second": 190.588,
53
+ "eval_steps_per_second": 3.0,
54
+ "step": 4911
55
+ },
56
+ {
57
+ "epoch": 4.0,
58
+ "learning_rate": 2.9333333333333333e-05,
59
+ "loss": 0.6934,
60
+ "step": 6548
61
+ },
62
+ {
63
+ "epoch": 4.0,
64
+ "eval_accuracy": 0.5053999633900788,
65
+ "eval_loss": 0.6930912137031555,
66
+ "eval_runtime": 28.6697,
67
+ "eval_samples_per_second": 190.549,
68
+ "eval_steps_per_second": 3.0,
69
+ "step": 6548
70
+ },
71
+ {
72
+ "epoch": 5.0,
73
+ "learning_rate": 2.6666666666666667e-05,
74
+ "loss": 0.6936,
75
+ "step": 8185
76
+ },
77
+ {
78
+ "epoch": 5.0,
79
+ "eval_accuracy": 0.4946000366099213,
80
+ "eval_loss": 0.6936073899269104,
81
+ "eval_runtime": 28.678,
82
+ "eval_samples_per_second": 190.495,
83
+ "eval_steps_per_second": 2.999,
84
+ "step": 8185
85
+ },
86
+ {
87
+ "epoch": 6.0,
88
+ "learning_rate": 2.4e-05,
89
+ "loss": 0.6933,
90
+ "step": 9822
91
+ },
92
+ {
93
+ "epoch": 6.0,
94
+ "eval_accuracy": 0.5053999633900788,
95
+ "eval_loss": 0.6930935382843018,
96
+ "eval_runtime": 28.6784,
97
+ "eval_samples_per_second": 190.492,
98
+ "eval_steps_per_second": 2.999,
99
+ "step": 9822
100
+ },
101
+ {
102
+ "epoch": 7.0,
103
+ "learning_rate": 2.1333333333333335e-05,
104
+ "loss": 0.6933,
105
+ "step": 11459
106
+ },
107
+ {
108
+ "epoch": 7.0,
109
+ "eval_accuracy": 0.4946000366099213,
110
+ "eval_loss": 0.6931483745574951,
111
+ "eval_runtime": 28.6596,
112
+ "eval_samples_per_second": 190.617,
113
+ "eval_steps_per_second": 3.001,
114
+ "step": 11459
115
+ },
116
+ {
117
+ "epoch": 8.0,
118
+ "learning_rate": 1.866666666666667e-05,
119
+ "loss": 0.6932,
120
+ "step": 13096
121
+ },
122
+ {
123
+ "epoch": 8.0,
124
+ "eval_accuracy": 0.4946000366099213,
125
+ "eval_loss": 0.6931501626968384,
126
+ "eval_runtime": 28.7157,
127
+ "eval_samples_per_second": 190.244,
128
+ "eval_steps_per_second": 2.995,
129
+ "step": 13096
130
+ },
131
+ {
132
+ "epoch": 9.0,
133
+ "learning_rate": 1.6000000000000003e-05,
134
+ "loss": 0.6933,
135
+ "step": 14733
136
+ },
137
+ {
138
+ "epoch": 9.0,
139
+ "eval_accuracy": 0.4946000366099213,
140
+ "eval_loss": 0.6932412981987,
141
+ "eval_runtime": 28.6426,
142
+ "eval_samples_per_second": 190.73,
143
+ "eval_steps_per_second": 3.003,
144
+ "step": 14733
145
+ },
146
+ {
147
+ "epoch": 9.0,
148
+ "step": 14733,
149
+ "total_flos": 1.396089008726999e+17,
150
+ "train_loss": 0.6947647454110246,
151
+ "train_runtime": 15057.6981,
152
+ "train_samples_per_second": 104.342,
153
+ "train_steps_per_second": 1.631
154
+ }
155
+ ],
156
+ "logging_steps": 1,
157
+ "max_steps": 24555,
158
+ "num_train_epochs": 15,
159
+ "save_steps": 500,
160
+ "total_flos": 1.396089008726999e+17,
161
+ "trial_name": null,
162
+ "trial_params": null
163
+ }