update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- wikitext
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: distilbert_add_pre-training-complete
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Masked Language Modeling
|
14 |
+
type: fill-mask
|
15 |
+
dataset:
|
16 |
+
name: wikitext
|
17 |
+
type: wikitext
|
18 |
+
config: wikitext-103-raw-v1
|
19 |
+
split: validation
|
20 |
+
args: wikitext-103-raw-v1
|
21 |
+
metrics:
|
22 |
+
- name: Accuracy
|
23 |
+
type: accuracy
|
24 |
+
value: 0.23321614400225005
|
25 |
+
---
|
26 |
+
|
27 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
28 |
+
should probably proofread and complete it, then remove this comment. -->
|
29 |
+
|
30 |
+
# distilbert_add_pre-training-complete
|
31 |
+
|
32 |
+
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the wikitext dataset.
|
33 |
+
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 4.9972
|
35 |
+
- Accuracy: 0.2332
|
36 |
+
|
37 |
+
## Model description
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Intended uses & limitations
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Training and evaluation data
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training procedure
|
50 |
+
|
51 |
+
### Training hyperparameters
|
52 |
+
|
53 |
+
The following hyperparameters were used during training:
|
54 |
+
- learning_rate: 5e-05
|
55 |
+
- train_batch_size: 64
|
56 |
+
- eval_batch_size: 64
|
57 |
+
- seed: 10
|
58 |
+
- distributed_type: multi-GPU
|
59 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
+
- lr_scheduler_type: linear
|
61 |
+
- lr_scheduler_warmup_steps: 100
|
62 |
+
- training_steps: 300000
|
63 |
+
- mixed_precision_training: Native AMP
|
64 |
+
|
65 |
+
### Training results
|
66 |
+
|
67 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
68 |
+
|:-------------:|:-----:|:------:|:---------------:|:--------:|
|
69 |
+
| 6.295 | 1.0 | 3573 | 6.0701 | 0.1522 |
|
70 |
+
| 6.0482 | 2.0 | 7146 | 5.9533 | 0.1565 |
|
71 |
+
| 5.9799 | 3.0 | 10719 | 5.9008 | 0.1584 |
|
72 |
+
| 5.9378 | 4.0 | 14292 | 5.8997 | 0.1545 |
|
73 |
+
| 5.9057 | 5.0 | 17865 | 5.8905 | 0.1536 |
|
74 |
+
| 5.8811 | 6.0 | 21438 | 5.8646 | 0.1550 |
|
75 |
+
| 5.8617 | 7.0 | 25011 | 5.8322 | 0.1534 |
|
76 |
+
| 5.844 | 8.0 | 28584 | 5.8563 | 0.1523 |
|
77 |
+
| 5.8297 | 9.0 | 32157 | 5.8352 | 0.1548 |
|
78 |
+
| 5.8175 | 10.0 | 35730 | 5.8136 | 0.1558 |
|
79 |
+
| 5.8056 | 11.0 | 39303 | 5.8147 | 0.1526 |
|
80 |
+
| 5.7921 | 12.0 | 42876 | 5.8020 | 0.1548 |
|
81 |
+
| 5.7777 | 13.0 | 46449 | 5.7891 | 0.1545 |
|
82 |
+
| 5.7596 | 14.0 | 50022 | 5.7370 | 0.1587 |
|
83 |
+
| 5.7414 | 15.0 | 53595 | 5.7396 | 0.1604 |
|
84 |
+
| 5.7243 | 16.0 | 57168 | 5.7490 | 0.1564 |
|
85 |
+
| 5.6997 | 17.0 | 60741 | 5.7135 | 0.1561 |
|
86 |
+
| 5.6698 | 18.0 | 64314 | 5.6858 | 0.1620 |
|
87 |
+
| 5.6398 | 19.0 | 67887 | 5.6735 | 0.1644 |
|
88 |
+
| 5.6135 | 20.0 | 71460 | 5.6174 | 0.1681 |
|
89 |
+
| 5.5899 | 21.0 | 75033 | 5.6191 | 0.1684 |
|
90 |
+
| 5.5699 | 22.0 | 78606 | 5.5977 | 0.1669 |
|
91 |
+
| 5.5487 | 23.0 | 82179 | 5.6139 | 0.1669 |
|
92 |
+
| 5.529 | 24.0 | 85752 | 5.5272 | 0.1741 |
|
93 |
+
| 5.512 | 25.0 | 89325 | 5.5271 | 0.1727 |
|
94 |
+
| 5.4939 | 26.0 | 92898 | 5.5190 | 0.1721 |
|
95 |
+
| 5.4765 | 27.0 | 96471 | 5.4824 | 0.1770 |
|
96 |
+
| 5.4604 | 28.0 | 100044 | 5.5159 | 0.1747 |
|
97 |
+
| 5.4422 | 29.0 | 103617 | 5.4577 | 0.1807 |
|
98 |
+
| 5.4243 | 30.0 | 107190 | 5.4546 | 0.1772 |
|
99 |
+
| 5.408 | 31.0 | 110763 | 5.4297 | 0.1837 |
|
100 |
+
| 5.3915 | 32.0 | 114336 | 5.4089 | 0.1866 |
|
101 |
+
| 5.3766 | 33.0 | 117909 | 5.3996 | 0.1848 |
|
102 |
+
| 5.3594 | 34.0 | 121482 | 5.3974 | 0.1841 |
|
103 |
+
| 5.3451 | 35.0 | 125055 | 5.3718 | 0.1908 |
|
104 |
+
| 5.3294 | 36.0 | 128628 | 5.3706 | 0.1878 |
|
105 |
+
| 5.3155 | 37.0 | 132201 | 5.3677 | 0.1903 |
|
106 |
+
| 5.2996 | 38.0 | 135774 | 5.2970 | 0.1994 |
|
107 |
+
| 5.287 | 39.0 | 139347 | 5.3127 | 0.1977 |
|
108 |
+
| 5.2735 | 40.0 | 142920 | 5.3145 | 0.1955 |
|
109 |
+
| 5.26 | 41.0 | 146493 | 5.2985 | 0.2017 |
|
110 |
+
| 5.2487 | 42.0 | 150066 | 5.2661 | 0.2025 |
|
111 |
+
| 5.2362 | 43.0 | 153639 | 5.2712 | 0.2031 |
|
112 |
+
| 5.2248 | 44.0 | 157212 | 5.2452 | 0.2049 |
|
113 |
+
| 5.2115 | 45.0 | 160785 | 5.2325 | 0.2054 |
|
114 |
+
| 5.1998 | 46.0 | 164358 | 5.2233 | 0.2075 |
|
115 |
+
| 5.188 | 47.0 | 167931 | 5.1994 | 0.2118 |
|
116 |
+
| 5.1779 | 48.0 | 171504 | 5.2436 | 0.2069 |
|
117 |
+
| 5.1664 | 49.0 | 175077 | 5.2203 | 0.2129 |
|
118 |
+
| 5.1546 | 50.0 | 178650 | 5.1820 | 0.2134 |
|
119 |
+
| 5.1431 | 51.0 | 182223 | 5.2029 | 0.2122 |
|
120 |
+
| 5.133 | 52.0 | 185796 | 5.1458 | 0.2140 |
|
121 |
+
| 5.1226 | 53.0 | 189369 | 5.1757 | 0.2163 |
|
122 |
+
| 5.1138 | 54.0 | 192942 | 5.1380 | 0.2193 |
|
123 |
+
| 5.1046 | 55.0 | 196515 | 5.1498 | 0.2178 |
|
124 |
+
| 5.0984 | 56.0 | 200088 | 5.1094 | 0.2194 |
|
125 |
+
| 5.0907 | 57.0 | 203661 | 5.1354 | 0.2202 |
|
126 |
+
| 5.0812 | 58.0 | 207234 | 5.0662 | 0.2256 |
|
127 |
+
| 5.0748 | 59.0 | 210807 | 5.1163 | 0.2181 |
|
128 |
+
| 5.067 | 60.0 | 214380 | 5.1193 | 0.2199 |
|
129 |
+
| 5.0609 | 61.0 | 217953 | 5.0919 | 0.2224 |
|
130 |
+
| 5.0536 | 62.0 | 221526 | 5.0899 | 0.2239 |
|
131 |
+
| 5.0491 | 63.0 | 225099 | 5.1125 | 0.2224 |
|
132 |
+
| 5.0433 | 64.0 | 228672 | 5.0892 | 0.2226 |
|
133 |
+
| 5.0373 | 65.0 | 232245 | 5.0644 | 0.2260 |
|
134 |
+
| 5.032 | 66.0 | 235818 | 5.0623 | 0.2253 |
|
135 |
+
| 5.0283 | 67.0 | 239391 | 5.1004 | 0.2213 |
|
136 |
+
| 5.0223 | 68.0 | 242964 | 5.0573 | 0.2279 |
|
137 |
+
| 5.0184 | 69.0 | 246537 | 5.0488 | 0.2271 |
|
138 |
+
| 5.014 | 70.0 | 250110 | 5.0482 | 0.2280 |
|
139 |
+
| 5.0102 | 71.0 | 253683 | 5.0600 | 0.2269 |
|
140 |
+
| 5.0079 | 72.0 | 257256 | 5.0271 | 0.2279 |
|
141 |
+
| 5.0029 | 73.0 | 260829 | 5.0629 | 0.2267 |
|
142 |
+
| 4.9994 | 74.0 | 264402 | 5.0304 | 0.2297 |
|
143 |
+
| 4.9978 | 75.0 | 267975 | 5.0485 | 0.2269 |
|
144 |
+
| 4.9945 | 76.0 | 271548 | 5.0380 | 0.2306 |
|
145 |
+
| 4.9917 | 77.0 | 275121 | 5.0590 | 0.2265 |
|
146 |
+
| 4.9913 | 78.0 | 278694 | 5.0585 | 0.2262 |
|
147 |
+
| 4.987 | 79.0 | 282267 | 5.0339 | 0.2278 |
|
148 |
+
| 4.9862 | 80.0 | 285840 | 5.0214 | 0.2305 |
|
149 |
+
| 4.9841 | 81.0 | 289413 | 5.0393 | 0.2271 |
|
150 |
+
| 4.983 | 82.0 | 292986 | 5.0200 | 0.2298 |
|
151 |
+
| 4.9816 | 83.0 | 296559 | 5.0289 | 0.2300 |
|
152 |
+
| 4.9801 | 83.96 | 300000 | 4.9972 | 0.2332 |
|
153 |
+
|
154 |
+
|
155 |
+
### Framework versions
|
156 |
+
|
157 |
+
- Transformers 4.26.0
|
158 |
+
- Pytorch 1.14.0a0+410ce96
|
159 |
+
- Datasets 2.9.0
|
160 |
+
- Tokenizers 0.13.2
|