gokuls commited on
Commit
f658bbc
1 Parent(s): 327fc0d

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +70 -0
README.md ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ metrics:
5
+ - accuracy
6
+ model-index:
7
+ - name: bert_12_layer_model_v2_complete_training_new_120
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # bert_12_layer_model_v2_complete_training_new_120
15
+
16
+ This model is a fine-tuned version of [gokuls/bert_12_layer_model_v2_complete_training_new_96](https://huggingface.co/gokuls/bert_12_layer_model_v2_complete_training_new_96) on the None dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 2.4439
19
+ - Accuracy: 0.5517
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 1e-05
39
+ - train_batch_size: 48
40
+ - eval_batch_size: 48
41
+ - seed: 10
42
+ - distributed_type: multi-GPU
43
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
+ - lr_scheduler_type: linear
45
+ - lr_scheduler_warmup_steps: 10000
46
+ - num_epochs: 5
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
51
+ |:-------------:|:-----:|:------:|:---------------:|:--------:|
52
+ | 2.7038 | 0.08 | 10000 | 2.6207 | 0.5282 |
53
+ | 2.6766 | 0.16 | 20000 | 2.5968 | 0.5309 |
54
+ | 2.6536 | 0.25 | 30000 | 2.5717 | 0.5346 |
55
+ | 2.645 | 0.33 | 40000 | 2.5576 | 0.5365 |
56
+ | 2.6164 | 0.41 | 50000 | 2.5344 | 0.5396 |
57
+ | 2.6027 | 0.49 | 60000 | 2.5164 | 0.5419 |
58
+ | 2.5779 | 0.57 | 70000 | 2.5001 | 0.5443 |
59
+ | 2.5642 | 0.66 | 80000 | 2.4863 | 0.5460 |
60
+ | 2.5439 | 0.74 | 90000 | 2.4716 | 0.5476 |
61
+ | 2.5344 | 0.82 | 100000 | 2.4551 | 0.5502 |
62
+ | 2.5314 | 0.9 | 110000 | 2.4439 | 0.5517 |
63
+
64
+
65
+ ### Framework versions
66
+
67
+ - Transformers 4.30.1
68
+ - Pytorch 1.14.0a0+410ce96
69
+ - Datasets 2.12.0
70
+ - Tokenizers 0.13.3