End of training
Browse files- README.md +89 -0
- pytorch_model.bin +1 -1
README.md
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: gokuls/HBERTv1_48_L6_H256_A4
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- massive
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: HBERTv1_48_L6_H256_A4_massive
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Text Classification
|
14 |
+
type: text-classification
|
15 |
+
dataset:
|
16 |
+
name: massive
|
17 |
+
type: massive
|
18 |
+
config: en-US
|
19 |
+
split: validation
|
20 |
+
args: en-US
|
21 |
+
metrics:
|
22 |
+
- name: Accuracy
|
23 |
+
type: accuracy
|
24 |
+
value: 0.8460403344810624
|
25 |
+
---
|
26 |
+
|
27 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
28 |
+
should probably proofread and complete it, then remove this comment. -->
|
29 |
+
|
30 |
+
# HBERTv1_48_L6_H256_A4_massive
|
31 |
+
|
32 |
+
This model is a fine-tuned version of [gokuls/HBERTv1_48_L6_H256_A4](https://huggingface.co/gokuls/HBERTv1_48_L6_H256_A4) on the massive dataset.
|
33 |
+
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.7233
|
35 |
+
- Accuracy: 0.8460
|
36 |
+
|
37 |
+
## Model description
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Intended uses & limitations
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Training and evaluation data
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training procedure
|
50 |
+
|
51 |
+
### Training hyperparameters
|
52 |
+
|
53 |
+
The following hyperparameters were used during training:
|
54 |
+
- learning_rate: 5e-05
|
55 |
+
- train_batch_size: 64
|
56 |
+
- eval_batch_size: 64
|
57 |
+
- seed: 33
|
58 |
+
- distributed_type: multi-GPU
|
59 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
+
- lr_scheduler_type: linear
|
61 |
+
- num_epochs: 15
|
62 |
+
|
63 |
+
### Training results
|
64 |
+
|
65 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
66 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
67 |
+
| 3.3254 | 1.0 | 180 | 2.3694 | 0.4638 |
|
68 |
+
| 1.8706 | 2.0 | 360 | 1.3999 | 0.6616 |
|
69 |
+
| 1.2107 | 3.0 | 540 | 1.0206 | 0.7378 |
|
70 |
+
| 0.8953 | 4.0 | 720 | 0.8675 | 0.7821 |
|
71 |
+
| 0.6964 | 5.0 | 900 | 0.7948 | 0.7973 |
|
72 |
+
| 0.5749 | 6.0 | 1080 | 0.7426 | 0.8165 |
|
73 |
+
| 0.4668 | 7.0 | 1260 | 0.7449 | 0.8180 |
|
74 |
+
| 0.3947 | 8.0 | 1440 | 0.7142 | 0.8283 |
|
75 |
+
| 0.3345 | 9.0 | 1620 | 0.7030 | 0.8406 |
|
76 |
+
| 0.2859 | 10.0 | 1800 | 0.7111 | 0.8411 |
|
77 |
+
| 0.2418 | 11.0 | 1980 | 0.7323 | 0.8392 |
|
78 |
+
| 0.2145 | 12.0 | 2160 | 0.7269 | 0.8392 |
|
79 |
+
| 0.1885 | 13.0 | 2340 | 0.7233 | 0.8460 |
|
80 |
+
| 0.17 | 14.0 | 2520 | 0.7294 | 0.8411 |
|
81 |
+
| 0.1579 | 15.0 | 2700 | 0.7331 | 0.8436 |
|
82 |
+
|
83 |
+
|
84 |
+
### Framework versions
|
85 |
+
|
86 |
+
- Transformers 4.34.0
|
87 |
+
- Pytorch 1.14.0a0+410ce96
|
88 |
+
- Datasets 2.14.5
|
89 |
+
- Tokenizers 0.14.0
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 53519909
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b95ec8d2c5e7dd264e77873ebde36be7918e479a87a5e6b9f4fb1eb81fd54966
|
3 |
size 53519909
|