End of training
Browse files
README.md
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: gokuls/HBERTv1_48_L12_H256_A4
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- massive
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: HBERTv1_48_L12_H256_A4_massive
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Text Classification
|
14 |
+
type: text-classification
|
15 |
+
dataset:
|
16 |
+
name: massive
|
17 |
+
type: massive
|
18 |
+
config: en-US
|
19 |
+
split: validation
|
20 |
+
args: en-US
|
21 |
+
metrics:
|
22 |
+
- name: Accuracy
|
23 |
+
type: accuracy
|
24 |
+
value: 0.7338908017707821
|
25 |
+
---
|
26 |
+
|
27 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
28 |
+
should probably proofread and complete it, then remove this comment. -->
|
29 |
+
|
30 |
+
# HBERTv1_48_L12_H256_A4_massive
|
31 |
+
|
32 |
+
This model is a fine-tuned version of [gokuls/HBERTv1_48_L12_H256_A4](https://huggingface.co/gokuls/HBERTv1_48_L12_H256_A4) on the massive dataset.
|
33 |
+
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 1.1699
|
35 |
+
- Accuracy: 0.7339
|
36 |
+
|
37 |
+
## Model description
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Intended uses & limitations
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Training and evaluation data
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training procedure
|
50 |
+
|
51 |
+
### Training hyperparameters
|
52 |
+
|
53 |
+
The following hyperparameters were used during training:
|
54 |
+
- learning_rate: 5e-05
|
55 |
+
- train_batch_size: 64
|
56 |
+
- eval_batch_size: 64
|
57 |
+
- seed: 33
|
58 |
+
- distributed_type: multi-GPU
|
59 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
+
- lr_scheduler_type: linear
|
61 |
+
- num_epochs: 15
|
62 |
+
|
63 |
+
### Training results
|
64 |
+
|
65 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
66 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
67 |
+
| 3.7238 | 1.0 | 180 | 3.4052 | 0.1382 |
|
68 |
+
| 3.1325 | 2.0 | 360 | 2.8875 | 0.2022 |
|
69 |
+
| 2.7162 | 3.0 | 540 | 2.5311 | 0.3030 |
|
70 |
+
| 2.4123 | 4.0 | 720 | 2.3315 | 0.3576 |
|
71 |
+
| 2.1258 | 5.0 | 900 | 2.0547 | 0.4186 |
|
72 |
+
| 1.8697 | 6.0 | 1080 | 1.8215 | 0.4889 |
|
73 |
+
| 1.6446 | 7.0 | 1260 | 1.6681 | 0.5421 |
|
74 |
+
| 1.4509 | 8.0 | 1440 | 1.5200 | 0.5853 |
|
75 |
+
| 1.2995 | 9.0 | 1620 | 1.4177 | 0.6188 |
|
76 |
+
| 1.1585 | 10.0 | 1800 | 1.3337 | 0.6557 |
|
77 |
+
| 1.0714 | 11.0 | 1980 | 1.2620 | 0.7059 |
|
78 |
+
| 0.9816 | 12.0 | 2160 | 1.2374 | 0.7147 |
|
79 |
+
| 0.9053 | 13.0 | 2340 | 1.1849 | 0.7290 |
|
80 |
+
| 0.8582 | 14.0 | 2520 | 1.1721 | 0.7324 |
|
81 |
+
| 0.8253 | 15.0 | 2700 | 1.1699 | 0.7339 |
|
82 |
+
|
83 |
+
|
84 |
+
### Framework versions
|
85 |
+
|
86 |
+
- Transformers 4.34.0
|
87 |
+
- Pytorch 1.14.0a0+410ce96
|
88 |
+
- Datasets 2.14.5
|
89 |
+
- Tokenizers 0.14.0
|