giantmonkeyTC
2344
34d1f8b
import unittest
import torch
from mmengine import DefaultScope
from mmdet3d.registry import MODELS
from mmdet3d.testing import (create_detector_inputs, get_detector_cfg,
setup_seed)
class TestImvoteNet(unittest.TestCase):
def test_imvotenet_only_img(self):
import mmdet3d.models
assert hasattr(mmdet3d.models, 'ImVoteNet')
DefaultScope.get_instance('test_imvotenet_img', scope_name='mmdet3d')
setup_seed(0)
votenet_net_cfg = get_detector_cfg(
'imvotenet/imvotenet_faster-rcnn-r50_fpn_4xb2_sunrgbd-3d.py')
model = MODELS.build(votenet_net_cfg)
packed_inputs = create_detector_inputs(
with_points=False, with_img=True, img_size=128)
if torch.cuda.is_available():
model = model.cuda()
# test simple_test
with torch.no_grad():
data = model.data_preprocessor(packed_inputs, True)
results = model.forward(**data, mode='predict')
self.assertEqual(len(results), 1)
self.assertIn('bboxes', results[0].pred_instances)
self.assertIn('scores', results[0].pred_instances)
self.assertIn('labels', results[0].pred_instances)
# save the memory
with torch.no_grad():
torch.cuda.empty_cache()
losses = model.forward(**data, mode='loss')
self.assertGreater(sum(losses['loss_rpn_cls']), 0)
self.assertGreater(losses['loss_cls'], 0)
self.assertGreater(losses['loss_bbox'], 0)
def test_imvotenet(self):
import mmdet3d.models
assert hasattr(mmdet3d.models, 'ImVoteNet')
DefaultScope.get_instance('test_imvotenet', scope_name='mmdet3d')
setup_seed(0)
votenet_net_cfg = get_detector_cfg(
'imvotenet/imvotenet_stage2_8xb16_sunrgbd-3d.py')
model = MODELS.build(votenet_net_cfg)
packed_inputs = create_detector_inputs(
with_points=True,
with_img=True,
img_size=128,
bboxes_3d_type='depth')
if torch.cuda.is_available():
model = model.cuda()
# test simple_test
with torch.no_grad():
data = model.data_preprocessor(packed_inputs, True)
results = model.forward(**data, mode='predict')
self.assertEqual(len(results), 1)
self.assertIn('bboxes_3d', results[0].pred_instances_3d)
self.assertIn('scores_3d', results[0].pred_instances_3d)
self.assertIn('labels_3d', results[0].pred_instances_3d)
# save the memory
with torch.no_grad():
losses = model.forward(**data, mode='loss')
self.assertGreater(losses['vote_loss'], 0)
self.assertGreater(losses['objectness_loss'], 0)
self.assertGreater(losses['semantic_loss'], 0)