giantmonkeyTC
2344
34d1f8b
import numpy as np
import pytest
import torch
from mmengine.structures import InstanceData
from mmdet3d.evaluation.metrics import KittiMetric
from mmdet3d.structures import Det3DDataSample, LiDARInstance3DBoxes
data_root = 'tests/data/kitti'
def _init_evaluate_input():
metainfo = dict(sample_idx=0)
predictions = Det3DDataSample()
pred_instances_3d = InstanceData()
pred_instances_3d.bboxes_3d = LiDARInstance3DBoxes(
torch.tensor(
[[8.7314, -1.8559, -1.5997, 0.4800, 1.2000, 1.8900, 0.0100]]))
pred_instances_3d.scores_3d = torch.Tensor([0.9])
pred_instances_3d.labels_3d = torch.Tensor([0])
predictions.pred_instances_3d = pred_instances_3d
predictions.pred_instances = InstanceData()
predictions.set_metainfo(metainfo)
predictions = predictions.to_dict()
return {}, [predictions]
def _init_multi_modal_evaluate_input():
metainfo = dict(sample_idx=0)
predictions = Det3DDataSample()
pred_instances_3d = InstanceData()
pred_instances = InstanceData()
pred_instances.bboxes = torch.tensor([[712.4, 143, 810.7, 307.92]])
pred_instances.scores = torch.Tensor([0.9])
pred_instances.labels = torch.Tensor([0])
pred_instances_3d.bboxes_3d = LiDARInstance3DBoxes(
torch.tensor(
[[8.7314, -1.8559, -1.5997, 0.4800, 1.2000, 1.8900, 0.0100]]))
pred_instances_3d.scores_3d = torch.Tensor([0.9])
pred_instances_3d.labels_3d = torch.Tensor([0])
predictions.pred_instances_3d = pred_instances_3d
predictions.pred_instances = pred_instances
predictions.set_metainfo(metainfo)
predictions = predictions.to_dict()
return {}, [predictions]
def test_multi_modal_kitti_metric():
if not torch.cuda.is_available():
pytest.skip('test requires GPU and torch+cuda')
kittimetric = KittiMetric(
data_root + '/kitti_infos_train.pkl', metric=['mAP'])
kittimetric.dataset_meta = dict(classes=['Pedestrian', 'Cyclist', 'Car'])
data_batch, predictions = _init_multi_modal_evaluate_input()
kittimetric.process(data_batch, predictions)
ap_dict = kittimetric.compute_metrics(kittimetric.results)
assert np.isclose(ap_dict['pred_instances_3d/KITTI/Overall_3D_AP11_easy'],
3.0303030303030307)
assert np.isclose(ap_dict['pred_instances_3d/KITTI/Overall_BEV_AP11_easy'],
3.0303030303030307)
assert np.isclose(ap_dict['pred_instances_3d/KITTI/Overall_2D_AP11_easy'],
3.0303030303030307)
assert np.isclose(ap_dict['pred_instances/KITTI/Overall_2D_AP11_easy'],
3.0303030303030307)
assert np.isclose(ap_dict['pred_instances/KITTI/Overall_2D_AP11_moderate'],
3.0303030303030307)
assert np.isclose(ap_dict['pred_instances/KITTI/Overall_2D_AP11_hard'],
3.0303030303030307)
def test_kitti_metric_mAP():
if not torch.cuda.is_available():
pytest.skip('test requires GPU and torch+cuda')
kittimetric = KittiMetric(
data_root + '/kitti_infos_train.pkl', metric=['mAP'])
kittimetric.dataset_meta = dict(classes=['Pedestrian', 'Cyclist', 'Car'])
data_batch, predictions = _init_evaluate_input()
kittimetric.process(data_batch, predictions)
ap_dict = kittimetric.compute_metrics(kittimetric.results)
assert np.isclose(ap_dict['pred_instances_3d/KITTI/Overall_3D_AP11_easy'],
3.0303030303030307)
assert np.isclose(
ap_dict['pred_instances_3d/KITTI/Overall_3D_AP11_moderate'],
3.0303030303030307)
assert np.isclose(ap_dict['pred_instances_3d/KITTI/Overall_3D_AP11_hard'],
3.0303030303030307)