|
_base_ = ['../_base_/schedules/cosine.py', '../_base_/default_runtime.py'] |
|
|
|
|
|
voxel_size = [0.05, 0.05, 0.1] |
|
point_cloud_range = [0, -40, -3, 70.4, 40, 1] |
|
|
|
model = dict( |
|
type='DynamicMVXFasterRCNN', |
|
data_preprocessor=dict( |
|
type='Det3DDataPreprocessor', |
|
voxel=True, |
|
voxel_type='dynamic', |
|
voxel_layer=dict( |
|
max_num_points=-1, |
|
point_cloud_range=point_cloud_range, |
|
voxel_size=voxel_size, |
|
max_voxels=(-1, -1)), |
|
mean=[102.9801, 115.9465, 122.7717], |
|
std=[1.0, 1.0, 1.0], |
|
bgr_to_rgb=False, |
|
pad_size_divisor=32), |
|
img_backbone=dict( |
|
type='mmdet.ResNet', |
|
depth=50, |
|
num_stages=4, |
|
out_indices=(0, 1, 2, 3), |
|
frozen_stages=1, |
|
norm_cfg=dict(type='BN', requires_grad=False), |
|
norm_eval=True, |
|
style='caffe'), |
|
img_neck=dict( |
|
type='mmdet.FPN', |
|
in_channels=[256, 512, 1024, 2048], |
|
out_channels=256, |
|
|
|
norm_cfg=dict(type='BN', requires_grad=False), |
|
num_outs=5), |
|
pts_voxel_encoder=dict( |
|
type='DynamicVFE', |
|
in_channels=4, |
|
feat_channels=[64, 64], |
|
with_distance=False, |
|
voxel_size=voxel_size, |
|
with_cluster_center=True, |
|
with_voxel_center=True, |
|
point_cloud_range=point_cloud_range, |
|
fusion_layer=dict( |
|
type='PointFusion', |
|
img_channels=256, |
|
pts_channels=64, |
|
mid_channels=128, |
|
out_channels=128, |
|
img_levels=[0, 1, 2, 3, 4], |
|
align_corners=False, |
|
activate_out=True, |
|
fuse_out=False)), |
|
pts_middle_encoder=dict( |
|
type='SparseEncoder', |
|
in_channels=128, |
|
sparse_shape=[41, 1600, 1408], |
|
order=('conv', 'norm', 'act')), |
|
pts_backbone=dict( |
|
type='SECOND', |
|
in_channels=256, |
|
layer_nums=[5, 5], |
|
layer_strides=[1, 2], |
|
out_channels=[128, 256]), |
|
pts_neck=dict( |
|
type='SECONDFPN', |
|
in_channels=[128, 256], |
|
upsample_strides=[1, 2], |
|
out_channels=[256, 256]), |
|
pts_bbox_head=dict( |
|
type='Anchor3DHead', |
|
num_classes=3, |
|
in_channels=512, |
|
feat_channels=512, |
|
use_direction_classifier=True, |
|
anchor_generator=dict( |
|
type='Anchor3DRangeGenerator', |
|
ranges=[ |
|
[0, -40.0, -0.6, 70.4, 40.0, -0.6], |
|
[0, -40.0, -0.6, 70.4, 40.0, -0.6], |
|
[0, -40.0, -1.78, 70.4, 40.0, -1.78], |
|
], |
|
sizes=[[0.8, 0.6, 1.73], [1.76, 0.6, 1.73], [3.9, 1.6, 1.56]], |
|
rotations=[0, 1.57], |
|
reshape_out=False), |
|
assigner_per_size=True, |
|
diff_rad_by_sin=True, |
|
assign_per_class=True, |
|
bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder'), |
|
loss_cls=dict( |
|
type='mmdet.FocalLoss', |
|
use_sigmoid=True, |
|
gamma=2.0, |
|
alpha=0.25, |
|
loss_weight=1.0), |
|
loss_bbox=dict( |
|
type='mmdet.SmoothL1Loss', beta=1.0 / 9.0, loss_weight=2.0), |
|
loss_dir=dict( |
|
type='mmdet.CrossEntropyLoss', use_sigmoid=False, |
|
loss_weight=0.2)), |
|
|
|
train_cfg=dict( |
|
pts=dict( |
|
assigner=[ |
|
dict( |
|
type='Max3DIoUAssigner', |
|
iou_calculator=dict(type='BboxOverlapsNearest3D'), |
|
pos_iou_thr=0.35, |
|
neg_iou_thr=0.2, |
|
min_pos_iou=0.2, |
|
ignore_iof_thr=-1), |
|
dict( |
|
type='Max3DIoUAssigner', |
|
iou_calculator=dict(type='BboxOverlapsNearest3D'), |
|
pos_iou_thr=0.35, |
|
neg_iou_thr=0.2, |
|
min_pos_iou=0.2, |
|
ignore_iof_thr=-1), |
|
dict( |
|
type='Max3DIoUAssigner', |
|
iou_calculator=dict(type='BboxOverlapsNearest3D'), |
|
pos_iou_thr=0.6, |
|
neg_iou_thr=0.45, |
|
min_pos_iou=0.45, |
|
ignore_iof_thr=-1), |
|
], |
|
allowed_border=0, |
|
pos_weight=-1, |
|
debug=False)), |
|
test_cfg=dict( |
|
pts=dict( |
|
use_rotate_nms=True, |
|
nms_across_levels=False, |
|
nms_thr=0.01, |
|
score_thr=0.1, |
|
min_bbox_size=0, |
|
nms_pre=100, |
|
max_num=50))) |
|
|
|
|
|
dataset_type = 'KittiDataset' |
|
data_root = 'data/kitti/' |
|
class_names = ['Pedestrian', 'Cyclist', 'Car'] |
|
metainfo = dict(classes=class_names) |
|
input_modality = dict(use_lidar=True, use_camera=True) |
|
backend_args = None |
|
train_pipeline = [ |
|
dict( |
|
type='LoadPointsFromFile', |
|
coord_type='LIDAR', |
|
load_dim=4, |
|
use_dim=4, |
|
backend_args=backend_args), |
|
dict(type='LoadImageFromFile', backend_args=backend_args), |
|
dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True), |
|
dict( |
|
type='RandomResize', scale=[(640, 192), (2560, 768)], keep_ratio=True), |
|
dict( |
|
type='GlobalRotScaleTrans', |
|
rot_range=[-0.78539816, 0.78539816], |
|
scale_ratio_range=[0.95, 1.05], |
|
translation_std=[0.2, 0.2, 0.2]), |
|
dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5), |
|
dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range), |
|
dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range), |
|
dict(type='PointShuffle'), |
|
dict( |
|
type='Pack3DDetInputs', |
|
keys=[ |
|
'points', 'img', 'gt_bboxes_3d', 'gt_labels_3d', 'gt_bboxes', |
|
'gt_labels' |
|
]) |
|
] |
|
test_pipeline = [ |
|
dict( |
|
type='LoadPointsFromFile', |
|
coord_type='LIDAR', |
|
load_dim=4, |
|
use_dim=4, |
|
backend_args=backend_args), |
|
dict(type='LoadImageFromFile', backend_args=backend_args), |
|
dict( |
|
type='MultiScaleFlipAug3D', |
|
img_scale=(1280, 384), |
|
pts_scale_ratio=1, |
|
flip=False, |
|
transforms=[ |
|
|
|
dict(type='Resize', scale=0, keep_ratio=True), |
|
dict( |
|
type='GlobalRotScaleTrans', |
|
rot_range=[0, 0], |
|
scale_ratio_range=[1., 1.], |
|
translation_std=[0, 0, 0]), |
|
dict(type='RandomFlip3D'), |
|
dict( |
|
type='PointsRangeFilter', point_cloud_range=point_cloud_range), |
|
]), |
|
dict(type='Pack3DDetInputs', keys=['points', 'img']) |
|
] |
|
modality = dict(use_lidar=True, use_camera=True) |
|
train_dataloader = dict( |
|
batch_size=2, |
|
num_workers=2, |
|
sampler=dict(type='DefaultSampler', shuffle=True), |
|
dataset=dict( |
|
type='RepeatDataset', |
|
times=2, |
|
dataset=dict( |
|
type=dataset_type, |
|
data_root=data_root, |
|
modality=modality, |
|
ann_file='kitti_infos_train.pkl', |
|
data_prefix=dict( |
|
pts='training/velodyne_reduced', img='training/image_2'), |
|
pipeline=train_pipeline, |
|
filter_empty_gt=False, |
|
metainfo=metainfo, |
|
|
|
|
|
box_type_3d='LiDAR', |
|
backend_args=backend_args))) |
|
|
|
val_dataloader = dict( |
|
batch_size=1, |
|
num_workers=1, |
|
sampler=dict(type='DefaultSampler', shuffle=False), |
|
dataset=dict( |
|
type=dataset_type, |
|
data_root=data_root, |
|
modality=modality, |
|
ann_file='kitti_infos_val.pkl', |
|
data_prefix=dict( |
|
pts='training/velodyne_reduced', img='training/image_2'), |
|
pipeline=test_pipeline, |
|
metainfo=metainfo, |
|
test_mode=True, |
|
box_type_3d='LiDAR', |
|
backend_args=backend_args)) |
|
test_dataloader = dict( |
|
batch_size=1, |
|
num_workers=1, |
|
sampler=dict(type='DefaultSampler', shuffle=False), |
|
dataset=dict( |
|
type=dataset_type, |
|
data_root=data_root, |
|
ann_file='kitti_infos_val.pkl', |
|
modality=modality, |
|
data_prefix=dict( |
|
pts='training/velodyne_reduced', img='training/image_2'), |
|
pipeline=test_pipeline, |
|
metainfo=metainfo, |
|
test_mode=True, |
|
box_type_3d='LiDAR', |
|
backend_args=backend_args)) |
|
|
|
optim_wrapper = dict( |
|
optimizer=dict(weight_decay=0.01), |
|
clip_grad=dict(max_norm=35, norm_type=2), |
|
) |
|
val_evaluator = dict( |
|
type='KittiMetric', ann_file='data/kitti/kitti_infos_val.pkl') |
|
test_evaluator = val_evaluator |
|
|
|
vis_backends = [dict(type='LocalVisBackend')] |
|
visualizer = dict( |
|
type='Det3DLocalVisualizer', vis_backends=vis_backends, name='visualizer') |
|
|
|
|
|
load_from = 'https://download.openmmlab.com/mmdetection3d/pretrain_models/mvx_faster_rcnn_detectron2-caffe_20e_coco-pretrain_gt-sample_kitti-3-class_moderate-79.3_20200207-a4a6a3c7.pth' |
|
|