|
_base_ = [ |
|
'../_base_/datasets/scannet-3d.py', '../_base_/models/groupfree3d.py', |
|
'../_base_/schedules/schedule-3x.py', '../_base_/default_runtime.py' |
|
] |
|
|
|
|
|
model = dict( |
|
backbone=dict( |
|
type='PointNet2SASSG', |
|
in_channels=3, |
|
num_points=(2048, 1024, 512, 256), |
|
radius=(0.2, 0.4, 0.8, 1.2), |
|
num_samples=(64, 32, 16, 16), |
|
sa_channels=((128, 128, 256), (256, 256, 512), (256, 256, 512), |
|
(256, 256, 512)), |
|
fp_channels=((512, 512), (512, 288)), |
|
norm_cfg=dict(type='BN2d'), |
|
sa_cfg=dict( |
|
type='PointSAModule', |
|
pool_mod='max', |
|
use_xyz=True, |
|
normalize_xyz=True)), |
|
bbox_head=dict( |
|
num_classes=18, |
|
num_decoder_layers=12, |
|
size_cls_agnostic=False, |
|
bbox_coder=dict( |
|
type='GroupFree3DBBoxCoder', |
|
num_sizes=18, |
|
num_dir_bins=1, |
|
with_rot=False, |
|
size_cls_agnostic=False, |
|
mean_sizes=[[0.76966727, 0.8116021, 0.92573744], |
|
[1.876858, 1.8425595, 1.1931566], |
|
[0.61328, 0.6148609, 0.7182701], |
|
[1.3955007, 1.5121545, 0.83443564], |
|
[0.97949594, 1.0675149, 0.6329687], |
|
[0.531663, 0.5955577, 1.7500148], |
|
[0.9624706, 0.72462326, 1.1481868], |
|
[0.83221924, 1.0490936, 1.6875663], |
|
[0.21132214, 0.4206159, 0.5372846], |
|
[1.4440073, 1.8970833, 0.26985747], |
|
[1.0294262, 1.4040797, 0.87554324], |
|
[1.3766412, 0.65521795, 1.6813129], |
|
[0.6650819, 0.71111923, 1.298853], |
|
[0.41999173, 0.37906948, 1.7513971], |
|
[0.59359556, 0.5912492, 0.73919016], |
|
[0.50867593, 0.50656086, 0.30136237], |
|
[1.1511526, 1.0546296, 0.49706793], |
|
[0.47535285, 0.49249494, 0.5802117]]), |
|
sampling_objectness_loss=dict( |
|
type='mmdet.FocalLoss', |
|
use_sigmoid=True, |
|
gamma=2.0, |
|
alpha=0.25, |
|
loss_weight=8.0), |
|
objectness_loss=dict( |
|
type='mmdet.FocalLoss', |
|
use_sigmoid=True, |
|
gamma=2.0, |
|
alpha=0.25, |
|
loss_weight=1.0), |
|
center_loss=dict( |
|
type='mmdet.SmoothL1Loss', |
|
beta=0.04, |
|
reduction='sum', |
|
loss_weight=10.0), |
|
dir_class_loss=dict( |
|
type='mmdet.CrossEntropyLoss', reduction='sum', loss_weight=1.0), |
|
dir_res_loss=dict( |
|
type='mmdet.SmoothL1Loss', reduction='sum', loss_weight=10.0), |
|
size_class_loss=dict( |
|
type='mmdet.CrossEntropyLoss', reduction='sum', loss_weight=1.0), |
|
size_res_loss=dict( |
|
type='mmdet.SmoothL1Loss', |
|
beta=1.0 / 9.0, |
|
reduction='sum', |
|
loss_weight=10.0 / 9.0), |
|
semantic_loss=dict( |
|
type='mmdet.CrossEntropyLoss', reduction='sum', loss_weight=1.0)), |
|
test_cfg=dict( |
|
sample_mode='kps', |
|
nms_thr=0.25, |
|
score_thr=0.0, |
|
per_class_proposal=True, |
|
prediction_stages='last_three')) |
|
|
|
|
|
dataset_type = 'ScanNetDataset' |
|
data_root = './data/scannet/' |
|
class_names = ('cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window', |
|
'bookshelf', 'picture', 'counter', 'desk', 'curtain', |
|
'refrigerator', 'showercurtrain', 'toilet', 'sink', 'bathtub', |
|
'garbagebin') |
|
|
|
metainfo = dict(classes=class_names) |
|
backend_args = None |
|
|
|
train_pipeline = [ |
|
dict( |
|
type='LoadPointsFromFile', |
|
coord_type='DEPTH', |
|
load_dim=6, |
|
use_dim=[0, 1, 2], |
|
backend_args=backend_args), |
|
dict( |
|
type='LoadAnnotations3D', |
|
with_bbox_3d=True, |
|
with_label_3d=True, |
|
with_mask_3d=True, |
|
with_seg_3d=True, |
|
backend_args=backend_args), |
|
dict(type='GlobalAlignment', rotation_axis=2), |
|
dict(type='PointSegClassMapping'), |
|
dict(type='PointSample', num_points=50000), |
|
dict( |
|
type='RandomFlip3D', |
|
sync_2d=False, |
|
flip_ratio_bev_horizontal=0.5, |
|
flip_ratio_bev_vertical=0.5), |
|
dict( |
|
type='GlobalRotScaleTrans', |
|
rot_range=[-0.087266, 0.087266], |
|
scale_ratio_range=[1.0, 1.0]), |
|
dict( |
|
type='Pack3DDetInputs', |
|
keys=[ |
|
'points', 'gt_bboxes_3d', 'gt_labels_3d', 'pts_semantic_mask', |
|
'pts_instance_mask' |
|
]) |
|
] |
|
test_pipeline = [ |
|
dict( |
|
type='LoadPointsFromFile', |
|
coord_type='DEPTH', |
|
load_dim=6, |
|
use_dim=[0, 1, 2], |
|
backend_args=backend_args), |
|
dict(type='GlobalAlignment', rotation_axis=2), |
|
dict( |
|
type='MultiScaleFlipAug3D', |
|
img_scale=(1333, 800), |
|
pts_scale_ratio=1, |
|
flip=False, |
|
transforms=[ |
|
dict( |
|
type='GlobalRotScaleTrans', |
|
rot_range=[0, 0], |
|
scale_ratio_range=[1., 1.], |
|
translation_std=[0, 0, 0]), |
|
dict( |
|
type='RandomFlip3D', |
|
sync_2d=False, |
|
flip_ratio_bev_horizontal=0.5, |
|
flip_ratio_bev_vertical=0.5), |
|
dict(type='PointSample', num_points=50000), |
|
]), |
|
dict(type='Pack3DDetInputs', keys=['points']) |
|
] |
|
|
|
train_dataloader = dict( |
|
batch_size=8, |
|
num_workers=4, |
|
sampler=dict(type='DefaultSampler', shuffle=True), |
|
dataset=dict( |
|
type='RepeatDataset', |
|
times=5, |
|
dataset=dict( |
|
type=dataset_type, |
|
data_root=data_root, |
|
ann_file='scannet_infos_train.pkl', |
|
pipeline=train_pipeline, |
|
filter_empty_gt=False, |
|
metainfo=metainfo, |
|
|
|
|
|
box_type_3d='Depth', |
|
backend_args=backend_args))) |
|
val_dataloader = dict( |
|
batch_size=1, |
|
num_workers=1, |
|
sampler=dict(type='DefaultSampler', shuffle=False), |
|
dataset=dict( |
|
type=dataset_type, |
|
data_root=data_root, |
|
ann_file='scannet_infos_val.pkl', |
|
pipeline=test_pipeline, |
|
metainfo=metainfo, |
|
test_mode=True, |
|
box_type_3d='Depth', |
|
backend_args=backend_args)) |
|
test_dataloader = dict( |
|
batch_size=1, |
|
num_workers=1, |
|
sampler=dict(type='DefaultSampler', shuffle=False), |
|
dataset=dict( |
|
type=dataset_type, |
|
data_root=data_root, |
|
ann_file='scannet_infos_val.pkl', |
|
pipeline=test_pipeline, |
|
metainfo=metainfo, |
|
test_mode=True, |
|
box_type_3d='Depth', |
|
backend_args=backend_args)) |
|
val_evaluator = dict(type='IndoorMetric') |
|
test_evaluator = val_evaluator |
|
|
|
|
|
lr = 0.006 |
|
optim_wrapper = dict( |
|
type='OptimWrapper', |
|
optimizer=dict(type='AdamW', lr=lr, weight_decay=0.0005), |
|
clip_grad=dict(max_norm=0.1, norm_type=2), |
|
paramwise_cfg=dict( |
|
custom_keys={ |
|
'bbox_head.decoder_layers': dict(lr_mult=0.1, decay_mult=1.0), |
|
'bbox_head.decoder_self_posembeds': dict( |
|
lr_mult=0.1, decay_mult=1.0), |
|
'bbox_head.decoder_cross_posembeds': dict( |
|
lr_mult=0.1, decay_mult=1.0), |
|
'bbox_head.decoder_query_proj': dict(lr_mult=0.1, decay_mult=1.0), |
|
'bbox_head.decoder_key_proj': dict(lr_mult=0.1, decay_mult=1.0) |
|
})) |
|
|
|
|
|
param_scheduler = [ |
|
dict( |
|
type='MultiStepLR', |
|
begin=0, |
|
end=80, |
|
by_epoch=True, |
|
milestones=[56, 68], |
|
gamma=0.1) |
|
] |
|
|
|
|
|
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=80, val_interval=1) |
|
val_cfg = dict(type='ValLoop') |
|
test_cfg = dict(type='TestLoop') |
|
|
|
default_hooks = dict( |
|
checkpoint=dict(type='CheckpointHook', interval=1, max_keep_ckpts=10)) |
|
|