mm3dtest / configs /centerpoint /centerpoint_voxel0075_second_secfpn_8xb4-cyclic-20e_nus-3d.py
giantmonkeyTC
2344
34d1f8b
_base_ = ['./centerpoint_voxel01_second_secfpn_8xb4-cyclic-20e_nus-3d.py']
# If point cloud range is changed, the models should also change their point
# cloud range accordingly
voxel_size = [0.075, 0.075, 0.2]
point_cloud_range = [-54, -54, -5.0, 54, 54, 3.0]
# Using calibration info convert the Lidar-coordinate point cloud range to the
# ego-coordinate point cloud range could bring a little promotion in nuScenes.
# point_cloud_range = [-54, -54.8, -5.0, 54, 53.2, 3.0]
# For nuScenes we usually do 10-class detection
class_names = [
'car', 'truck', 'construction_vehicle', 'bus', 'trailer', 'barrier',
'motorcycle', 'bicycle', 'pedestrian', 'traffic_cone'
]
data_prefix = dict(pts='samples/LIDAR_TOP', img='', sweeps='sweeps/LIDAR_TOP')
model = dict(
data_preprocessor=dict(
voxel_layer=dict(
voxel_size=voxel_size, point_cloud_range=point_cloud_range)),
pts_middle_encoder=dict(sparse_shape=[41, 1440, 1440]),
pts_bbox_head=dict(
bbox_coder=dict(
voxel_size=voxel_size[:2], pc_range=point_cloud_range[:2])),
train_cfg=dict(
pts=dict(
grid_size=[1440, 1440, 40],
voxel_size=voxel_size,
point_cloud_range=point_cloud_range)),
test_cfg=dict(
pts=dict(voxel_size=voxel_size[:2], pc_range=point_cloud_range[:2])))
dataset_type = 'NuScenesDataset'
data_root = 'data/nuscenes/'
backend_args = None
db_sampler = dict(
data_root=data_root,
info_path=data_root + 'nuscenes_dbinfos_train.pkl',
rate=1.0,
prepare=dict(
filter_by_difficulty=[-1],
filter_by_min_points=dict(
car=5,
truck=5,
bus=5,
trailer=5,
construction_vehicle=5,
traffic_cone=5,
barrier=5,
motorcycle=5,
bicycle=5,
pedestrian=5)),
classes=class_names,
sample_groups=dict(
car=2,
truck=3,
construction_vehicle=7,
bus=4,
trailer=6,
barrier=2,
motorcycle=6,
bicycle=6,
pedestrian=2,
traffic_cone=2),
points_loader=dict(
type='LoadPointsFromFile',
coord_type='LIDAR',
load_dim=5,
use_dim=[0, 1, 2, 3, 4],
backend_args=backend_args),
backend_args=backend_args)
train_pipeline = [
dict(
type='LoadPointsFromFile',
coord_type='LIDAR',
load_dim=5,
use_dim=5,
backend_args=backend_args),
dict(
type='LoadPointsFromMultiSweeps',
sweeps_num=9,
use_dim=[0, 1, 2, 3, 4],
pad_empty_sweeps=True,
remove_close=True,
backend_args=backend_args),
dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True),
dict(type='ObjectSample', db_sampler=db_sampler),
dict(
type='GlobalRotScaleTrans',
rot_range=[-0.3925, 0.3925],
scale_ratio_range=[0.95, 1.05],
translation_std=[0, 0, 0]),
dict(
type='RandomFlip3D',
sync_2d=False,
flip_ratio_bev_horizontal=0.5,
flip_ratio_bev_vertical=0.5),
dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
dict(type='ObjectNameFilter', classes=class_names),
dict(type='PointShuffle'),
dict(
type='Pack3DDetInputs',
keys=['points', 'gt_bboxes_3d', 'gt_labels_3d'])
]
test_pipeline = [
dict(
type='LoadPointsFromFile',
coord_type='LIDAR',
load_dim=5,
use_dim=5,
backend_args=backend_args),
dict(
type='LoadPointsFromMultiSweeps',
sweeps_num=9,
use_dim=[0, 1, 2, 3, 4],
pad_empty_sweeps=True,
remove_close=True,
backend_args=backend_args),
dict(
type='MultiScaleFlipAug3D',
img_scale=(1333, 800),
pts_scale_ratio=1,
flip=False,
transforms=[
dict(
type='GlobalRotScaleTrans',
rot_range=[0, 0],
scale_ratio_range=[1., 1.],
translation_std=[0, 0, 0]),
dict(type='RandomFlip3D'),
dict(
type='PointsRangeFilter', point_cloud_range=point_cloud_range)
]),
dict(type='Pack3DDetInputs', keys=['points'])
]
train_dataloader = dict(
dataset=dict(
dataset=dict(
pipeline=train_pipeline, metainfo=dict(classes=class_names))))
test_dataloader = dict(
dataset=dict(pipeline=test_pipeline, metainfo=dict(classes=class_names)))
val_dataloader = dict(
dataset=dict(pipeline=test_pipeline, metainfo=dict(classes=class_names)))