Commit
·
fff30fe
1
Parent(s):
5b60956
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,262 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
model-index:
|
6 |
+
- name: BERiT_2000_custom_architecture_relu_40_epochs
|
7 |
+
results: []
|
8 |
+
---
|
9 |
+
|
10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
+
should probably proofread and complete it, then remove this comment. -->
|
12 |
+
|
13 |
+
# BERiT_2000_custom_architecture_relu_40_epochs
|
14 |
+
|
15 |
+
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
|
16 |
+
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 6.3968
|
18 |
+
|
19 |
+
## Model description
|
20 |
+
|
21 |
+
More information needed
|
22 |
+
|
23 |
+
## Intended uses & limitations
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Training and evaluation data
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training procedure
|
32 |
+
|
33 |
+
### Training hyperparameters
|
34 |
+
|
35 |
+
The following hyperparameters were used during training:
|
36 |
+
- learning_rate: 0.0005
|
37 |
+
- train_batch_size: 8
|
38 |
+
- eval_batch_size: 8
|
39 |
+
- seed: 42
|
40 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
41 |
+
- lr_scheduler_type: linear
|
42 |
+
- num_epochs: 40
|
43 |
+
- label_smoothing_factor: 0.2
|
44 |
+
|
45 |
+
### Training results
|
46 |
+
|
47 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
48 |
+
|:-------------:|:-----:|:------:|:---------------:|
|
49 |
+
| 14.8756 | 0.19 | 500 | 8.3404 |
|
50 |
+
| 7.8098 | 0.39 | 1000 | 7.3110 |
|
51 |
+
| 7.2696 | 0.58 | 1500 | 7.1646 |
|
52 |
+
| 7.1277 | 0.77 | 2000 | 7.0953 |
|
53 |
+
| 7.0939 | 0.97 | 2500 | 7.0701 |
|
54 |
+
| 7.0621 | 1.16 | 3000 | 7.0003 |
|
55 |
+
| 7.0236 | 1.36 | 3500 | 6.9189 |
|
56 |
+
| 6.9898 | 1.55 | 4000 | 6.8536 |
|
57 |
+
| 6.9625 | 1.74 | 4500 | 6.8450 |
|
58 |
+
| 6.9125 | 1.94 | 5000 | 6.7799 |
|
59 |
+
| 6.9115 | 2.13 | 5500 | 6.8028 |
|
60 |
+
| 6.8954 | 2.32 | 6000 | 6.7288 |
|
61 |
+
| 6.8289 | 2.52 | 6500 | 6.7664 |
|
62 |
+
| 6.855 | 2.71 | 7000 | 6.7064 |
|
63 |
+
| 6.8134 | 2.9 | 7500 | 6.7155 |
|
64 |
+
| 6.7907 | 3.1 | 8000 | 6.7050 |
|
65 |
+
| 6.791 | 3.29 | 8500 | 6.6695 |
|
66 |
+
| 6.7659 | 3.49 | 9000 | 6.6815 |
|
67 |
+
| 6.775 | 3.68 | 9500 | 6.6449 |
|
68 |
+
| 6.7508 | 3.87 | 10000 | 6.6684 |
|
69 |
+
| 6.7627 | 4.07 | 10500 | 6.6397 |
|
70 |
+
| 6.7229 | 4.26 | 11000 | 6.6417 |
|
71 |
+
| 6.7336 | 4.45 | 11500 | 6.6824 |
|
72 |
+
| 6.7138 | 4.65 | 12000 | 6.6252 |
|
73 |
+
| 6.7123 | 4.84 | 12500 | 6.6374 |
|
74 |
+
| 6.703 | 5.03 | 13000 | 6.6400 |
|
75 |
+
| 6.7054 | 5.23 | 13500 | 6.6264 |
|
76 |
+
| 6.6978 | 5.42 | 14000 | 6.6094 |
|
77 |
+
| 6.6944 | 5.62 | 14500 | 6.6627 |
|
78 |
+
| 6.6857 | 5.81 | 15000 | 6.6363 |
|
79 |
+
| 6.694 | 6.0 | 15500 | 6.6026 |
|
80 |
+
| 6.6882 | 6.2 | 16000 | 6.6123 |
|
81 |
+
| 6.6694 | 6.39 | 16500 | 6.5918 |
|
82 |
+
| 6.6781 | 6.58 | 17000 | 6.6201 |
|
83 |
+
| 6.6605 | 6.78 | 17500 | 6.6316 |
|
84 |
+
| 6.6435 | 6.97 | 18000 | 6.5789 |
|
85 |
+
| 6.6658 | 7.16 | 18500 | 6.5999 |
|
86 |
+
| 6.6551 | 7.36 | 19000 | 6.5425 |
|
87 |
+
| 6.6603 | 7.55 | 19500 | 6.5790 |
|
88 |
+
| 6.6589 | 7.75 | 20000 | 6.5767 |
|
89 |
+
| 6.675 | 7.94 | 20500 | 6.6005 |
|
90 |
+
| 6.6362 | 8.13 | 21000 | 6.5962 |
|
91 |
+
| 6.6391 | 8.33 | 21500 | 6.5716 |
|
92 |
+
| 6.6379 | 8.52 | 22000 | 6.5830 |
|
93 |
+
| 6.6164 | 8.71 | 22500 | 6.6137 |
|
94 |
+
| 6.638 | 8.91 | 23000 | 6.5877 |
|
95 |
+
| 6.6255 | 9.1 | 23500 | 6.6197 |
|
96 |
+
| 6.6284 | 9.3 | 24000 | 6.5573 |
|
97 |
+
| 6.6198 | 9.49 | 24500 | 6.5717 |
|
98 |
+
| 6.6025 | 9.68 | 25000 | 6.5627 |
|
99 |
+
| 6.6334 | 9.88 | 25500 | 6.5902 |
|
100 |
+
| 6.6305 | 10.07 | 26000 | 6.5628 |
|
101 |
+
| 6.5797 | 10.26 | 26500 | 6.5625 |
|
102 |
+
| 6.5906 | 10.46 | 27000 | 6.5808 |
|
103 |
+
| 6.5904 | 10.65 | 27500 | 6.5690 |
|
104 |
+
| 6.5935 | 10.84 | 28000 | 6.5845 |
|
105 |
+
| 6.6231 | 11.04 | 28500 | 6.5282 |
|
106 |
+
| 6.5923 | 11.23 | 29000 | 6.6107 |
|
107 |
+
| 6.6136 | 11.43 | 29500 | 6.5475 |
|
108 |
+
| 6.5954 | 11.62 | 30000 | 6.5823 |
|
109 |
+
| 6.5821 | 11.81 | 30500 | 6.5721 |
|
110 |
+
| 6.5993 | 12.01 | 31000 | 6.5492 |
|
111 |
+
| 6.5584 | 12.2 | 31500 | 6.4938 |
|
112 |
+
| 6.5886 | 12.39 | 32000 | 6.6026 |
|
113 |
+
| 6.5625 | 12.59 | 32500 | 6.5902 |
|
114 |
+
| 6.572 | 12.78 | 33000 | 6.5436 |
|
115 |
+
| 6.5807 | 12.97 | 33500 | 6.5588 |
|
116 |
+
| 6.5853 | 13.17 | 34000 | 6.5555 |
|
117 |
+
| 6.5727 | 13.36 | 34500 | 6.5606 |
|
118 |
+
| 6.5456 | 13.56 | 35000 | 6.5386 |
|
119 |
+
| 6.5538 | 13.75 | 35500 | 6.5712 |
|
120 |
+
| 6.5456 | 13.94 | 36000 | 6.5582 |
|
121 |
+
| 6.5734 | 14.14 | 36500 | 6.4951 |
|
122 |
+
| 6.5639 | 14.33 | 37000 | 6.5323 |
|
123 |
+
| 6.5712 | 14.52 | 37500 | 6.5049 |
|
124 |
+
| 6.5739 | 14.72 | 38000 | 6.5523 |
|
125 |
+
| 6.5534 | 14.91 | 38500 | 6.5188 |
|
126 |
+
| 6.5401 | 15.1 | 39000 | 6.5968 |
|
127 |
+
| 6.5456 | 15.3 | 39500 | 6.5413 |
|
128 |
+
| 6.5555 | 15.49 | 40000 | 6.5347 |
|
129 |
+
| 6.538 | 15.69 | 40500 | 6.5180 |
|
130 |
+
| 6.537 | 15.88 | 41000 | 6.5372 |
|
131 |
+
| 6.537 | 16.07 | 41500 | 6.5514 |
|
132 |
+
| 6.5445 | 16.27 | 42000 | 6.5242 |
|
133 |
+
| 6.5285 | 16.46 | 42500 | 6.5071 |
|
134 |
+
| 6.5046 | 16.65 | 43000 | 6.5342 |
|
135 |
+
| 6.5609 | 16.85 | 43500 | 6.5329 |
|
136 |
+
| 6.527 | 17.04 | 44000 | 6.5569 |
|
137 |
+
| 6.5199 | 17.23 | 44500 | 6.5438 |
|
138 |
+
| 6.5328 | 17.43 | 45000 | 6.5380 |
|
139 |
+
| 6.5183 | 17.62 | 45500 | 6.5273 |
|
140 |
+
| 6.5349 | 17.82 | 46000 | 6.5209 |
|
141 |
+
| 6.5283 | 18.01 | 46500 | 6.4884 |
|
142 |
+
| 6.5111 | 18.2 | 47000 | 6.5036 |
|
143 |
+
| 6.4895 | 18.4 | 47500 | 6.5675 |
|
144 |
+
| 6.5308 | 18.59 | 48000 | 6.5378 |
|
145 |
+
| 6.5159 | 18.78 | 48500 | 6.4792 |
|
146 |
+
| 6.4875 | 18.98 | 49000 | 6.4846 |
|
147 |
+
| 6.5076 | 19.17 | 49500 | 6.5203 |
|
148 |
+
| 6.4991 | 19.36 | 50000 | 6.5007 |
|
149 |
+
| 6.5269 | 19.56 | 50500 | 6.4796 |
|
150 |
+
| 6.4887 | 19.75 | 51000 | 6.5197 |
|
151 |
+
| 6.4995 | 19.95 | 51500 | 6.5009 |
|
152 |
+
| 6.4762 | 20.14 | 52000 | 6.5049 |
|
153 |
+
| 6.4872 | 20.33 | 52500 | 6.4880 |
|
154 |
+
| 6.5117 | 20.53 | 53000 | 6.4917 |
|
155 |
+
| 6.5035 | 20.72 | 53500 | 6.4791 |
|
156 |
+
| 6.4784 | 20.91 | 54000 | 6.4771 |
|
157 |
+
| 6.4749 | 21.11 | 54500 | 6.5230 |
|
158 |
+
| 6.4867 | 21.3 | 55000 | 6.4954 |
|
159 |
+
| 6.4921 | 21.49 | 55500 | 6.5079 |
|
160 |
+
| 6.4587 | 21.69 | 56000 | 6.5309 |
|
161 |
+
| 6.4839 | 21.88 | 56500 | 6.4476 |
|
162 |
+
| 6.5011 | 22.08 | 57000 | 6.5025 |
|
163 |
+
| 6.471 | 22.27 | 57500 | 6.5122 |
|
164 |
+
| 6.4689 | 22.46 | 58000 | 6.4689 |
|
165 |
+
| 6.4764 | 22.66 | 58500 | 6.5073 |
|
166 |
+
| 6.4764 | 22.85 | 59000 | 6.4741 |
|
167 |
+
| 6.4751 | 23.04 | 59500 | 6.4978 |
|
168 |
+
| 6.4823 | 23.24 | 60000 | 6.4857 |
|
169 |
+
| 6.4594 | 23.43 | 60500 | 6.4817 |
|
170 |
+
| 6.4795 | 23.63 | 61000 | 6.5292 |
|
171 |
+
| 6.4565 | 23.82 | 61500 | 6.4684 |
|
172 |
+
| 6.4627 | 24.01 | 62000 | 6.4900 |
|
173 |
+
| 6.4542 | 24.21 | 62500 | 6.4373 |
|
174 |
+
| 6.4692 | 24.4 | 63000 | 6.4787 |
|
175 |
+
| 6.4772 | 24.59 | 63500 | 6.4553 |
|
176 |
+
| 6.4613 | 24.79 | 64000 | 6.4695 |
|
177 |
+
| 6.4673 | 24.98 | 64500 | 6.5077 |
|
178 |
+
| 6.466 | 25.17 | 65000 | 6.4919 |
|
179 |
+
| 6.4595 | 25.37 | 65500 | 6.4451 |
|
180 |
+
| 6.444 | 25.56 | 66000 | 6.4750 |
|
181 |
+
| 6.438 | 25.76 | 66500 | 6.4672 |
|
182 |
+
| 6.4499 | 25.95 | 67000 | 6.4358 |
|
183 |
+
| 6.4578 | 26.14 | 67500 | 6.4762 |
|
184 |
+
| 6.4701 | 26.34 | 68000 | 6.4462 |
|
185 |
+
| 6.4296 | 26.53 | 68500 | 6.4879 |
|
186 |
+
| 6.4305 | 26.72 | 69000 | 6.4519 |
|
187 |
+
| 6.443 | 26.92 | 69500 | 6.4530 |
|
188 |
+
| 6.4571 | 27.11 | 70000 | 6.4564 |
|
189 |
+
| 6.4477 | 27.3 | 70500 | 6.4557 |
|
190 |
+
| 6.443 | 27.5 | 71000 | 6.4862 |
|
191 |
+
| 6.4429 | 27.69 | 71500 | 6.4498 |
|
192 |
+
| 6.4374 | 27.89 | 72000 | 6.4225 |
|
193 |
+
| 6.4363 | 28.08 | 72500 | 6.4723 |
|
194 |
+
| 6.4127 | 28.27 | 73000 | 6.4733 |
|
195 |
+
| 6.4116 | 28.47 | 73500 | 6.4499 |
|
196 |
+
| 6.4312 | 28.66 | 74000 | 6.4600 |
|
197 |
+
| 6.4251 | 28.85 | 74500 | 6.4451 |
|
198 |
+
| 6.4318 | 29.05 | 75000 | 6.4337 |
|
199 |
+
| 6.4432 | 29.24 | 75500 | 6.4713 |
|
200 |
+
| 6.4183 | 29.43 | 76000 | 6.4699 |
|
201 |
+
| 6.4109 | 29.63 | 76500 | 6.4591 |
|
202 |
+
| 6.3939 | 29.82 | 77000 | 6.4768 |
|
203 |
+
| 6.4194 | 30.02 | 77500 | 6.4786 |
|
204 |
+
| 6.4262 | 30.21 | 78000 | 6.4407 |
|
205 |
+
| 6.4392 | 30.4 | 78500 | 6.4202 |
|
206 |
+
| 6.4311 | 30.6 | 79000 | 6.4361 |
|
207 |
+
| 6.3963 | 30.79 | 79500 | 6.4346 |
|
208 |
+
| 6.3872 | 30.98 | 80000 | 6.3810 |
|
209 |
+
| 6.4277 | 31.18 | 80500 | 6.4451 |
|
210 |
+
| 6.4112 | 31.37 | 81000 | 6.4243 |
|
211 |
+
| 6.4202 | 31.56 | 81500 | 6.4502 |
|
212 |
+
| 6.444 | 31.76 | 82000 | 6.4572 |
|
213 |
+
| 6.4066 | 31.95 | 82500 | 6.4033 |
|
214 |
+
| 6.4101 | 32.15 | 83000 | 6.4154 |
|
215 |
+
| 6.3985 | 32.34 | 83500 | 6.4377 |
|
216 |
+
| 6.4294 | 32.53 | 84000 | 6.4392 |
|
217 |
+
| 6.397 | 32.73 | 84500 | 6.4387 |
|
218 |
+
| 6.4217 | 32.92 | 85000 | 6.4305 |
|
219 |
+
| 6.4061 | 33.11 | 85500 | 6.4541 |
|
220 |
+
| 6.4014 | 33.31 | 86000 | 6.4173 |
|
221 |
+
| 6.4223 | 33.5 | 86500 | 6.4403 |
|
222 |
+
| 6.3953 | 33.69 | 87000 | 6.4333 |
|
223 |
+
| 6.4135 | 33.89 | 87500 | 6.4183 |
|
224 |
+
| 6.3955 | 34.08 | 88000 | 6.3958 |
|
225 |
+
| 6.4064 | 34.28 | 88500 | 6.3913 |
|
226 |
+
| 6.3997 | 34.47 | 89000 | 6.4330 |
|
227 |
+
| 6.4212 | 34.66 | 89500 | 6.3955 |
|
228 |
+
| 6.3957 | 34.86 | 90000 | 6.4438 |
|
229 |
+
| 6.3936 | 35.05 | 90500 | 6.4382 |
|
230 |
+
| 6.3927 | 35.24 | 91000 | 6.4055 |
|
231 |
+
| 6.3972 | 35.44 | 91500 | 6.4006 |
|
232 |
+
| 6.4137 | 35.63 | 92000 | 6.4245 |
|
233 |
+
| 6.3947 | 35.82 | 92500 | 6.4057 |
|
234 |
+
| 6.3798 | 36.02 | 93000 | 6.4006 |
|
235 |
+
| 6.4011 | 36.21 | 93500 | 6.3943 |
|
236 |
+
| 6.4012 | 36.41 | 94000 | 6.3766 |
|
237 |
+
| 6.3961 | 36.6 | 94500 | 6.4260 |
|
238 |
+
| 6.3819 | 36.79 | 95000 | 6.3801 |
|
239 |
+
| 6.3795 | 36.99 | 95500 | 6.4019 |
|
240 |
+
| 6.3954 | 37.18 | 96000 | 6.4387 |
|
241 |
+
| 6.3874 | 37.37 | 96500 | 6.4477 |
|
242 |
+
| 6.3844 | 37.57 | 97000 | 6.4177 |
|
243 |
+
| 6.3898 | 37.76 | 97500 | 6.4213 |
|
244 |
+
| 6.3855 | 37.96 | 98000 | 6.3838 |
|
245 |
+
| 6.3825 | 38.15 | 98500 | 6.4048 |
|
246 |
+
| 6.3615 | 38.34 | 99000 | 6.4636 |
|
247 |
+
| 6.392 | 38.54 | 99500 | 6.4197 |
|
248 |
+
| 6.3773 | 38.73 | 100000 | 6.4505 |
|
249 |
+
| 6.3834 | 38.92 | 100500 | 6.3889 |
|
250 |
+
| 6.3846 | 39.12 | 101000 | 6.4394 |
|
251 |
+
| 6.376 | 39.31 | 101500 | 6.3923 |
|
252 |
+
| 6.3699 | 39.5 | 102000 | 6.4025 |
|
253 |
+
| 6.3826 | 39.7 | 102500 | 6.3951 |
|
254 |
+
| 6.373 | 39.89 | 103000 | 6.3968 |
|
255 |
+
|
256 |
+
|
257 |
+
### Framework versions
|
258 |
+
|
259 |
+
- Transformers 4.24.0
|
260 |
+
- Pytorch 1.12.1+cu113
|
261 |
+
- Datasets 2.7.1
|
262 |
+
- Tokenizers 0.13.2
|