Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2_newest.zip +3 -0
- ppo-LunarLander-v2_newest/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2_newest/data +95 -0
- ppo-LunarLander-v2_newest/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2_newest/policy.pth +3 -0
- ppo-LunarLander-v2_newest/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2_newest/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 278.43 +/- 19.69
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff6e3d9d280>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff6e3d9d310>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff6e3d9d3a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff6e3d9d430>", "_build": "<function ActorCriticPolicy._build at 0x7ff6e3d9d4c0>", "forward": "<function ActorCriticPolicy.forward at 0x7ff6e3d9d550>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff6e3d9d5e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff6e3d9d700>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff6e3d9d790>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff6e3d9d820>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff6e3d9d8b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff6e3d9d940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff6e3d978a0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678129323722895536, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMZPj2OGsA9EU8pvvoWS74NzVi9H0S5vAAAAAAAAAAAvt6JvujLUj89r3U+DWLYvkZb+r081EU+AAAAAAAAAADm+Zw9NInDPqqS+L3GSra+KJU/vQaMuTsAAAAAAAAAAAAf7L1XDiQ/Oq1FPbId0L4oL3y9Wo1dOwAAAAAAAAAAZiwPvKAx+T6NEvo94VbTvizomj3ulHs9AAAAAAAAAADQpaU+dMdqP/A3Sz7faSa/vtX7PiTULzwAAAAAAAAAALMJiD20Nl4/hVq/PV0s+L6bHPA96uojvQAAAAAAAAAA5uUhPT7KqT9i73U+/SbevtrJczzo6Sw9AAAAAAAAAAAmy8k9daOIPkAFIr4LHaq+XD4pvVp/rb0AAAAAAAAAAGY2XjwD6By8aCVpvcn7MDwhAZ49/lgWvQAAgD8AAIA/5l8OvqsYIj9ydYU+ENzOvnjKTj02+NE9AAAAAAAAAABme7U8dohmPUe7Gb4OrVi+qkSVveoqjzwAAAAAAAAAAJqz37yFZ/673owNPOKHkjwXnVS9gs56PQAAgD8AAIA/5j5yvXjbij6eLRc+qs6yvuucdD0kXDM8AAAAAAAAAADzpYY96fpGvNuuB7x9Kf+89QqmvVYH0r0AAIA/AACAP02Y0r2fo2E/qgiTvcB14b4dmPG9aphgPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVLBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIgxd9BWklcECUhpRSlIwBbJRL6owBdJRHQJ75baQFLWZ1fZQoaAZoCWgPQwhiD+1jha1xQJSGlFKUaBVL/WgWR0Ce+l2f029+dX2UKGgGaAloD0MI28GIfYIVcUCUhpRSlGgVS95oFkdAnvrLbpNbknV9lChoBmgJaA9DCOcZ+5LNtXFAlIaUUpRoFUvxaBZHQJ77GbkOqed1fZQoaAZoCWgPQwgcJhqkoPBwQJSGlFKUaBVL2WgWR0Ce+8JHy3CsdX2UKGgGaAloD0MIGqIKfwb2cUCUhpRSlGgVTQIBaBZHQJ78qd4FA3V1fZQoaAZoCWgPQwi+wRcmUxZuQJSGlFKUaBVL72gWR0Ce/6Z/CqIadX2UKGgGaAloD0MILdLEOwC4cUCUhpRSlGgVS+toFkdAnwBQrDqGDnV9lChoBmgJaA9DCLUZpyGql3NAlIaUUpRoFUvFaBZHQJ8AZTS9du51fZQoaAZoCWgPQwjnpzgOvHpwQJSGlFKUaBVLxmgWR0CfAH1DSgGsdX2UKGgGaAloD0MID0JAvkQvcUCUhpRSlGgVS9toFkdAnwDjxoZhrnV9lChoBmgJaA9DCKJFtvP9kXJAlIaUUpRoFUvfaBZHQJ8BHDR+jM51fZQoaAZoCWgPQwgYJegv9LFxQJSGlFKUaBVL8GgWR0CfAaZtelbedX2UKGgGaAloD0MIUyRfCaS2ckCUhpRSlGgVS79oFkdAnwHRLXcxkHV9lChoBmgJaA9DCJlKP+HspHNAlIaUUpRoFUvlaBZHQJ8B6+36Q/51fZQoaAZoCWgPQwhA3NWrCJVxQJSGlFKUaBVL9WgWR0CfAprzGxUvdX2UKGgGaAloD0MIPujZrPqjcUCUhpRSlGgVS9BoFkdAnwL+ZPVNH3V9lChoBmgJaA9DCGvXhLTG9XBAlIaUUpRoFUvzaBZHQJ8DqVzIV/N1fZQoaAZoCWgPQwgCY30Dk/pvQJSGlFKUaBVL3GgWR0CfA85tFa0QdX2UKGgGaAloD0MI6fAQxk9ccUCUhpRSlGgVS8ZoFkdAnwPehPCVKXV9lChoBmgJaA9DCJ1kq8tpk3NAlIaUUpRoFUvfaBZHQJ8HLJA+pwV1fZQoaAZoCWgPQwhdqPxrOa9wQJSGlFKUaBVLzWgWR0CfB7GsFMZhdX2UKGgGaAloD0MIJ2vUQzQecECUhpRSlGgVS9xoFkdAnwfy925hB3V9lChoBmgJaA9DCM+goX+CIHNAlIaUUpRoFUvUaBZHQJ8IQ8PnSv11fZQoaAZoCWgPQwicUIiAA8JzQJSGlFKUaBVL0mgWR0CfCPyKvV3EdX2UKGgGaAloD0MIpkI8Eq9nc0CUhpRSlGgVS/loFkdAnwkrQ9ic5XV9lChoBmgJaA9DCKAVGLJ623BAlIaUUpRoFU0LAWgWR0CfCd974SHudX2UKGgGaAloD0MIOuenOE45ckCUhpRSlGgVS+1oFkdAnwn+mrKeTXV9lChoBmgJaA9DCHEbDeDtVXFAlIaUUpRoFU0EAWgWR0CfC0WhRIjGdX2UKGgGaAloD0MIZOsZwjEVcECUhpRSlGgVS+JoFkdAnwtdA5aNdnV9lChoBmgJaA9DCGsnSkIiFnJAlIaUUpRoFUvMaBZHQJ8LiiyprDZ1fZQoaAZoCWgPQwhSJ6CJsIFwQJSGlFKUaBVL+GgWR0CfC6ziCJ40dX2UKGgGaAloD0MInxwFiELDcECUhpRSlGgVS9FoFkdAnwvtSEUTMHV9lChoBmgJaA9DCNKOG343H3NAlIaUUpRoFUv8aBZHQJ8lKAy2x6h1fZQoaAZoCWgPQwhpyHiUylNzQJSGlFKUaBVL1GgWR0CfJxyGBWgfdX2UKGgGaAloD0MIUORJ0rW7b0CUhpRSlGgVS/JoFkdAnye/En9ehXV9lChoBmgJaA9DCOtztRV7IHNAlIaUUpRoFUveaBZHQJ8n3fsNUfh1fZQoaAZoCWgPQwgMkdPXM+VxQJSGlFKUaBVL22gWR0CfKETINmUXdX2UKGgGaAloD0MIiV+xhgt9b0CUhpRSlGgVS+loFkdAnyljMibDuXV9lChoBmgJaA9DCIZXkjyXpHNAlIaUUpRoFUvmaBZHQJ8pYJ6Y3Nt1fZQoaAZoCWgPQwi2EyUhkdRuQJSGlFKUaBVNGQFoFkdAnymOVX3g1nV9lChoBmgJaA9DCCLCvwgarXNAlIaUUpRoFU0JAWgWR0CfKeMTewcHdX2UKGgGaAloD0MI08H6PweGcECUhpRSlGgVS99oFkdAnyorKJVKgHV9lChoBmgJaA9DCFdfXRWoTG9AlIaUUpRoFUvbaBZHQJ8qRmWdEst1fZQoaAZoCWgPQwixFMlXwo9yQJSGlFKUaBVL52gWR0CfKlpJf6XTdX2UKGgGaAloD0MIP8QGC6c1b0CUhpRSlGgVS+NoFkdAnypo+OfdynV9lChoBmgJaA9DCJikMsUcem5AlIaUUpRoFUv7aBZHQJ8rbKaG5+Z1fZQoaAZoCWgPQwg7b2OzIzhxQJSGlFKUaBVL5GgWR0CfLBAxBVuKdX2UKGgGaAloD0MIlx3iHzY9c0CUhpRSlGgVS+NoFkdAny4ixiXpn3V9lChoBmgJaA9DCD0pkxqaaHFAlIaUUpRoFUvNaBZHQJ8umQr+YMR1fZQoaAZoCWgPQwhEatrFtHdxQJSGlFKUaBVL3WgWR0CfLrK8tf5UdX2UKGgGaAloD0MIKQmJtI2dQkCUhpRSlGgVTegDaBZHQJ8v4hW5pal1fZQoaAZoCWgPQwjV6UDWkwVyQJSGlFKUaBVNBQFoFkdAny/hjJ+2E3V9lChoBmgJaA9DCHctIR/08DRAlIaUUpRoFU3oA2gWR0CfMG5ksjFAdX2UKGgGaAloD0MIcF6c+CpXc0CUhpRSlGgVS+loFkdAnzB7sF+uvHV9lChoBmgJaA9DCKvoD8185nBAlIaUUpRoFUvhaBZHQJ8wrdXT3Ix1fZQoaAZoCWgPQwiBI4EGm0hwQJSGlFKUaBVL02gWR0CfMLW1c+qzdX2UKGgGaAloD0MISriQR/BJb0CUhpRSlGgVS+doFkdAnzEwI+nqFHV9lChoBmgJaA9DCHAKKxWUG3JAlIaUUpRoFUv3aBZHQJ8xdRNyo4x1fZQoaAZoCWgPQwiUE+0qpE5xQJSGlFKUaBVNEQFoFkdAnzGGq5sj3XV9lChoBmgJaA9DCD21+uoqPXNAlIaUUpRoFU0AAWgWR0CfMZKsMiKSdX2UKGgGaAloD0MIUG1wIvqRbUCUhpRSlGgVTS0BaBZHQJ8x/JZGKAJ1fZQoaAZoCWgPQwgZc9cS8u5wQJSGlFKUaBVL12gWR0CfMg1dxAB1dX2UKGgGaAloD0MIi+JV1nZLckCUhpRSlGgVS/RoFkdAnzItHMEA53V9lChoBmgJaA9DCK5hhsaTsnBAlIaUUpRoFUvNaBZHQJ8zgOlO45N1fZQoaAZoCWgPQwjBApgycDFuQJSGlFKUaBVL32gWR0CfM4dXDFZQdX2UKGgGaAloD0MIIv/MID5MckCUhpRSlGgVS+RoFkdAnzPvdyksSXV9lChoBmgJaA9DCAIPDCA8JXBAlIaUUpRoFUvgaBZHQJ802fChvit1fZQoaAZoCWgPQwj9T/7uHRFvQJSGlFKUaBVL1WgWR0CfNRq/M4cWdX2UKGgGaAloD0MIYye8BOcvcUCUhpRSlGgVS/VoFkdAnzVWs/6frnV9lChoBmgJaA9DCErRyr2AkXBAlIaUUpRoFUvhaBZHQJ81m8cuJ1t1fZQoaAZoCWgPQwg9uhEWFd9xQJSGlFKUaBVL2GgWR0CfNefwZwXJdX2UKGgGaAloD0MIzZVBtQE6cUCUhpRSlGgVS/RoFkdAnzYFWGRFJHV9lChoBmgJaA9DCCyf5Xnw1XJAlIaUUpRoFU0TAWgWR0CfNn6XBxgidX2UKGgGaAloD0MI/I7hsR/Oc0CUhpRSlGgVS+FoFkdAnzZ/nKW9lHV9lChoBmgJaA9DCEmBBTDl/m1AlIaUUpRoFUvlaBZHQJ83D6LwWnF1fZQoaAZoCWgPQwj0wMdgBd1xQJSGlFKUaBVNBwFoFkdAnzdCCFsYVXV9lChoBmgJaA9DCGxaKQRypHBAlIaUUpRoFU0IAWgWR0CfN1qtozvadX2UKGgGaAloD0MI+1qXGiGcb0CUhpRSlGgVS/RoFkdAnzeD8+A3DXV9lChoBmgJaA9DCPFL/bwpznFAlIaUUpRoFUv0aBZHQJ83qYplSTB1fZQoaAZoCWgPQwizsRLzrIQ5QJSGlFKUaBVLe2gWR0CfN7YukDZEdX2UKGgGaAloD0MIHEC/79+zcECUhpRSlGgVS89oFkdAnzhUXHim23V9lChoBmgJaA9DCJZfBmMEc3FAlIaUUpRoFUvgaBZHQJ84q03Ov+x1fZQoaAZoCWgPQwiFz9bBQZFvQJSGlFKUaBVL6WgWR0CfOUR4QjD9dX2UKGgGaAloD0MI3CkdrD89ckCUhpRSlGgVS89oFkdAnznzFdcB2nV9lChoBmgJaA9DCI1GPq94yW9AlIaUUpRoFUvoaBZHQJ86SeDnNgV1fZQoaAZoCWgPQwhq+uyAK8VzQJSGlFKUaBVL3GgWR0CfOn9RJmNBdX2UKGgGaAloD0MIkiQIV4CecECUhpRSlGgVS+RoFkdAnzr2IbfgrHV9lChoBmgJaA9DCJZBtcEJqmxAlIaUUpRoFUvgaBZHQJ86+4MF2V51fZQoaAZoCWgPQwjheanYmLtxQJSGlFKUaBVL3mgWR0CfO2Y150KadX2UKGgGaAloD0MI3X2Oj9Yvc0CUhpRSlGgVS8hoFkdAnzvbTpgTiHV9lChoBmgJaA9DCNF4Ioiz33FAlIaUUpRoFUv4aBZHQJ87+IhyKel1fZQoaAZoCWgPQwhP6WD9H+pxQJSGlFKUaBVL2WgWR0CfPAMYMvytdX2UKGgGaAloD0MI7PZZZaYPcECUhpRSlGgVS+RoFkdAnzxZ+YtxuXV9lChoBmgJaA9DCGIUBI9v4HFAlIaUUpRoFUvcaBZHQJ88czTF2mp1fZQoaAZoCWgPQwhvhEVFHPdwQJSGlFKUaBVL9WgWR0CfPHKWszVMdX2UKGgGaAloD0MIMZV+wpmac0CUhpRSlGgVS8loFkdAnzz59AooeHV9lChoBmgJaA9DCAqBXOKIgnNAlIaUUpRoFUvdaBZHQJ89DrxAjY91fZQoaAZoCWgPQwiG6BA40jtyQJSGlFKUaBVNAgFoFkdAnz02dmQKbHV9lChoBmgJaA9DCAPQKF06JHFAlIaUUpRoFUvYaBZHQJ891fBvaUR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 492, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2_newest.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d1af91a65d4562009765884cd747e2b2a7f520f4014ed902ed65c466c9591317
|
3 |
+
size 147312
|
ppo-LunarLander-v2_newest/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo-LunarLander-v2_newest/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7ff6e3d9d280>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff6e3d9d310>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff6e3d9d3a0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff6e3d9d430>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7ff6e3d9d4c0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7ff6e3d9d550>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff6e3d9d5e0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff6e3d9d700>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7ff6e3d9d790>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff6e3d9d820>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff6e3d9d8b0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff6e3d9d940>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7ff6e3d978a0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 2015232,
|
47 |
+
"_total_timesteps": 2000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1678129323722895536,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMZPj2OGsA9EU8pvvoWS74NzVi9H0S5vAAAAAAAAAAAvt6JvujLUj89r3U+DWLYvkZb+r081EU+AAAAAAAAAADm+Zw9NInDPqqS+L3GSra+KJU/vQaMuTsAAAAAAAAAAAAf7L1XDiQ/Oq1FPbId0L4oL3y9Wo1dOwAAAAAAAAAAZiwPvKAx+T6NEvo94VbTvizomj3ulHs9AAAAAAAAAADQpaU+dMdqP/A3Sz7faSa/vtX7PiTULzwAAAAAAAAAALMJiD20Nl4/hVq/PV0s+L6bHPA96uojvQAAAAAAAAAA5uUhPT7KqT9i73U+/SbevtrJczzo6Sw9AAAAAAAAAAAmy8k9daOIPkAFIr4LHaq+XD4pvVp/rb0AAAAAAAAAAGY2XjwD6By8aCVpvcn7MDwhAZ49/lgWvQAAgD8AAIA/5l8OvqsYIj9ydYU+ENzOvnjKTj02+NE9AAAAAAAAAABme7U8dohmPUe7Gb4OrVi+qkSVveoqjzwAAAAAAAAAAJqz37yFZ/673owNPOKHkjwXnVS9gs56PQAAgD8AAIA/5j5yvXjbij6eLRc+qs6yvuucdD0kXDM8AAAAAAAAAADzpYY96fpGvNuuB7x9Kf+89QqmvVYH0r0AAIA/AACAP02Y0r2fo2E/qgiTvcB14b4dmPG9aphgPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.007616000000000067,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVLBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIgxd9BWklcECUhpRSlIwBbJRL6owBdJRHQJ75baQFLWZ1fZQoaAZoCWgPQwhiD+1jha1xQJSGlFKUaBVL/WgWR0Ce+l2f029+dX2UKGgGaAloD0MI28GIfYIVcUCUhpRSlGgVS95oFkdAnvrLbpNbknV9lChoBmgJaA9DCOcZ+5LNtXFAlIaUUpRoFUvxaBZHQJ77GbkOqed1fZQoaAZoCWgPQwgcJhqkoPBwQJSGlFKUaBVL2WgWR0Ce+8JHy3CsdX2UKGgGaAloD0MIGqIKfwb2cUCUhpRSlGgVTQIBaBZHQJ78qd4FA3V1fZQoaAZoCWgPQwi+wRcmUxZuQJSGlFKUaBVL72gWR0Ce/6Z/CqIadX2UKGgGaAloD0MILdLEOwC4cUCUhpRSlGgVS+toFkdAnwBQrDqGDnV9lChoBmgJaA9DCLUZpyGql3NAlIaUUpRoFUvFaBZHQJ8AZTS9du51fZQoaAZoCWgPQwjnpzgOvHpwQJSGlFKUaBVLxmgWR0CfAH1DSgGsdX2UKGgGaAloD0MID0JAvkQvcUCUhpRSlGgVS9toFkdAnwDjxoZhrnV9lChoBmgJaA9DCKJFtvP9kXJAlIaUUpRoFUvfaBZHQJ8BHDR+jM51fZQoaAZoCWgPQwgYJegv9LFxQJSGlFKUaBVL8GgWR0CfAaZtelbedX2UKGgGaAloD0MIUyRfCaS2ckCUhpRSlGgVS79oFkdAnwHRLXcxkHV9lChoBmgJaA9DCJlKP+HspHNAlIaUUpRoFUvlaBZHQJ8B6+36Q/51fZQoaAZoCWgPQwhA3NWrCJVxQJSGlFKUaBVL9WgWR0CfAprzGxUvdX2UKGgGaAloD0MIPujZrPqjcUCUhpRSlGgVS9BoFkdAnwL+ZPVNH3V9lChoBmgJaA9DCGvXhLTG9XBAlIaUUpRoFUvzaBZHQJ8DqVzIV/N1fZQoaAZoCWgPQwgCY30Dk/pvQJSGlFKUaBVL3GgWR0CfA85tFa0QdX2UKGgGaAloD0MI6fAQxk9ccUCUhpRSlGgVS8ZoFkdAnwPehPCVKXV9lChoBmgJaA9DCJ1kq8tpk3NAlIaUUpRoFUvfaBZHQJ8HLJA+pwV1fZQoaAZoCWgPQwhdqPxrOa9wQJSGlFKUaBVLzWgWR0CfB7GsFMZhdX2UKGgGaAloD0MIJ2vUQzQecECUhpRSlGgVS9xoFkdAnwfy925hB3V9lChoBmgJaA9DCM+goX+CIHNAlIaUUpRoFUvUaBZHQJ8IQ8PnSv11fZQoaAZoCWgPQwicUIiAA8JzQJSGlFKUaBVL0mgWR0CfCPyKvV3EdX2UKGgGaAloD0MIpkI8Eq9nc0CUhpRSlGgVS/loFkdAnwkrQ9ic5XV9lChoBmgJaA9DCKAVGLJ623BAlIaUUpRoFU0LAWgWR0CfCd974SHudX2UKGgGaAloD0MIOuenOE45ckCUhpRSlGgVS+1oFkdAnwn+mrKeTXV9lChoBmgJaA9DCHEbDeDtVXFAlIaUUpRoFU0EAWgWR0CfC0WhRIjGdX2UKGgGaAloD0MIZOsZwjEVcECUhpRSlGgVS+JoFkdAnwtdA5aNdnV9lChoBmgJaA9DCGsnSkIiFnJAlIaUUpRoFUvMaBZHQJ8LiiyprDZ1fZQoaAZoCWgPQwhSJ6CJsIFwQJSGlFKUaBVL+GgWR0CfC6ziCJ40dX2UKGgGaAloD0MInxwFiELDcECUhpRSlGgVS9FoFkdAnwvtSEUTMHV9lChoBmgJaA9DCNKOG343H3NAlIaUUpRoFUv8aBZHQJ8lKAy2x6h1fZQoaAZoCWgPQwhpyHiUylNzQJSGlFKUaBVL1GgWR0CfJxyGBWgfdX2UKGgGaAloD0MIUORJ0rW7b0CUhpRSlGgVS/JoFkdAnye/En9ehXV9lChoBmgJaA9DCOtztRV7IHNAlIaUUpRoFUveaBZHQJ8n3fsNUfh1fZQoaAZoCWgPQwgMkdPXM+VxQJSGlFKUaBVL22gWR0CfKETINmUXdX2UKGgGaAloD0MIiV+xhgt9b0CUhpRSlGgVS+loFkdAnyljMibDuXV9lChoBmgJaA9DCIZXkjyXpHNAlIaUUpRoFUvmaBZHQJ8pYJ6Y3Nt1fZQoaAZoCWgPQwi2EyUhkdRuQJSGlFKUaBVNGQFoFkdAnymOVX3g1nV9lChoBmgJaA9DCCLCvwgarXNAlIaUUpRoFU0JAWgWR0CfKeMTewcHdX2UKGgGaAloD0MI08H6PweGcECUhpRSlGgVS99oFkdAnyorKJVKgHV9lChoBmgJaA9DCFdfXRWoTG9AlIaUUpRoFUvbaBZHQJ8qRmWdEst1fZQoaAZoCWgPQwixFMlXwo9yQJSGlFKUaBVL52gWR0CfKlpJf6XTdX2UKGgGaAloD0MIP8QGC6c1b0CUhpRSlGgVS+NoFkdAnypo+OfdynV9lChoBmgJaA9DCJikMsUcem5AlIaUUpRoFUv7aBZHQJ8rbKaG5+Z1fZQoaAZoCWgPQwg7b2OzIzhxQJSGlFKUaBVL5GgWR0CfLBAxBVuKdX2UKGgGaAloD0MIlx3iHzY9c0CUhpRSlGgVS+NoFkdAny4ixiXpn3V9lChoBmgJaA9DCD0pkxqaaHFAlIaUUpRoFUvNaBZHQJ8umQr+YMR1fZQoaAZoCWgPQwhEatrFtHdxQJSGlFKUaBVL3WgWR0CfLrK8tf5UdX2UKGgGaAloD0MIKQmJtI2dQkCUhpRSlGgVTegDaBZHQJ8v4hW5pal1fZQoaAZoCWgPQwjV6UDWkwVyQJSGlFKUaBVNBQFoFkdAny/hjJ+2E3V9lChoBmgJaA9DCHctIR/08DRAlIaUUpRoFU3oA2gWR0CfMG5ksjFAdX2UKGgGaAloD0MIcF6c+CpXc0CUhpRSlGgVS+loFkdAnzB7sF+uvHV9lChoBmgJaA9DCKvoD8185nBAlIaUUpRoFUvhaBZHQJ8wrdXT3Ix1fZQoaAZoCWgPQwiBI4EGm0hwQJSGlFKUaBVL02gWR0CfMLW1c+qzdX2UKGgGaAloD0MISriQR/BJb0CUhpRSlGgVS+doFkdAnzEwI+nqFHV9lChoBmgJaA9DCHAKKxWUG3JAlIaUUpRoFUv3aBZHQJ8xdRNyo4x1fZQoaAZoCWgPQwiUE+0qpE5xQJSGlFKUaBVNEQFoFkdAnzGGq5sj3XV9lChoBmgJaA9DCD21+uoqPXNAlIaUUpRoFU0AAWgWR0CfMZKsMiKSdX2UKGgGaAloD0MIUG1wIvqRbUCUhpRSlGgVTS0BaBZHQJ8x/JZGKAJ1fZQoaAZoCWgPQwgZc9cS8u5wQJSGlFKUaBVL12gWR0CfMg1dxAB1dX2UKGgGaAloD0MIi+JV1nZLckCUhpRSlGgVS/RoFkdAnzItHMEA53V9lChoBmgJaA9DCK5hhsaTsnBAlIaUUpRoFUvNaBZHQJ8zgOlO45N1fZQoaAZoCWgPQwjBApgycDFuQJSGlFKUaBVL32gWR0CfM4dXDFZQdX2UKGgGaAloD0MIIv/MID5MckCUhpRSlGgVS+RoFkdAnzPvdyksSXV9lChoBmgJaA9DCAIPDCA8JXBAlIaUUpRoFUvgaBZHQJ802fChvit1fZQoaAZoCWgPQwj9T/7uHRFvQJSGlFKUaBVL1WgWR0CfNRq/M4cWdX2UKGgGaAloD0MIYye8BOcvcUCUhpRSlGgVS/VoFkdAnzVWs/6frnV9lChoBmgJaA9DCErRyr2AkXBAlIaUUpRoFUvhaBZHQJ81m8cuJ1t1fZQoaAZoCWgPQwg9uhEWFd9xQJSGlFKUaBVL2GgWR0CfNefwZwXJdX2UKGgGaAloD0MIzZVBtQE6cUCUhpRSlGgVS/RoFkdAnzYFWGRFJHV9lChoBmgJaA9DCCyf5Xnw1XJAlIaUUpRoFU0TAWgWR0CfNn6XBxgidX2UKGgGaAloD0MI/I7hsR/Oc0CUhpRSlGgVS+FoFkdAnzZ/nKW9lHV9lChoBmgJaA9DCEmBBTDl/m1AlIaUUpRoFUvlaBZHQJ83D6LwWnF1fZQoaAZoCWgPQwj0wMdgBd1xQJSGlFKUaBVNBwFoFkdAnzdCCFsYVXV9lChoBmgJaA9DCGxaKQRypHBAlIaUUpRoFU0IAWgWR0CfN1qtozvadX2UKGgGaAloD0MI+1qXGiGcb0CUhpRSlGgVS/RoFkdAnzeD8+A3DXV9lChoBmgJaA9DCPFL/bwpznFAlIaUUpRoFUv0aBZHQJ83qYplSTB1fZQoaAZoCWgPQwizsRLzrIQ5QJSGlFKUaBVLe2gWR0CfN7YukDZEdX2UKGgGaAloD0MIHEC/79+zcECUhpRSlGgVS89oFkdAnzhUXHim23V9lChoBmgJaA9DCJZfBmMEc3FAlIaUUpRoFUvgaBZHQJ84q03Ov+x1fZQoaAZoCWgPQwiFz9bBQZFvQJSGlFKUaBVL6WgWR0CfOUR4QjD9dX2UKGgGaAloD0MI3CkdrD89ckCUhpRSlGgVS89oFkdAnznzFdcB2nV9lChoBmgJaA9DCI1GPq94yW9AlIaUUpRoFUvoaBZHQJ86SeDnNgV1fZQoaAZoCWgPQwhq+uyAK8VzQJSGlFKUaBVL3GgWR0CfOn9RJmNBdX2UKGgGaAloD0MIkiQIV4CecECUhpRSlGgVS+RoFkdAnzr2IbfgrHV9lChoBmgJaA9DCJZBtcEJqmxAlIaUUpRoFUvgaBZHQJ86+4MF2V51fZQoaAZoCWgPQwjheanYmLtxQJSGlFKUaBVL3mgWR0CfO2Y150KadX2UKGgGaAloD0MI3X2Oj9Yvc0CUhpRSlGgVS8hoFkdAnzvbTpgTiHV9lChoBmgJaA9DCNF4Ioiz33FAlIaUUpRoFUv4aBZHQJ87+IhyKel1fZQoaAZoCWgPQwhP6WD9H+pxQJSGlFKUaBVL2WgWR0CfPAMYMvytdX2UKGgGaAloD0MI7PZZZaYPcECUhpRSlGgVS+RoFkdAnzxZ+YtxuXV9lChoBmgJaA9DCGIUBI9v4HFAlIaUUpRoFUvcaBZHQJ88czTF2mp1fZQoaAZoCWgPQwhvhEVFHPdwQJSGlFKUaBVL9WgWR0CfPHKWszVMdX2UKGgGaAloD0MIMZV+wpmac0CUhpRSlGgVS8loFkdAnzz59AooeHV9lChoBmgJaA9DCAqBXOKIgnNAlIaUUpRoFUvdaBZHQJ89DrxAjY91fZQoaAZoCWgPQwiG6BA40jtyQJSGlFKUaBVNAgFoFkdAnz02dmQKbHV9lChoBmgJaA9DCAPQKF06JHFAlIaUUpRoFUvYaBZHQJ891fBvaUR1ZS4="
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 492,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
ppo-LunarLander-v2_newest/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0370280e24e1b6c4670b88ad41175f8aac30e3470d91cfb8b14956968be2d758
|
3 |
+
size 87929
|
ppo-LunarLander-v2_newest/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7aa6e71884f50cc34ac0ac088aa1ab3d73b6888740b34ac17561f8b70bbf9955
|
3 |
+
size 43393
|
ppo-LunarLander-v2_newest/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2_newest/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (199 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 278.4337269213734, "std_reward": 19.692538738502044, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-06T20:06:17.920328"}
|