gloriforge commited on
Commit
6aefc94
·
verified ·
1 Parent(s): cbab64a

Upload folder using huggingface_hub

Browse files
__pycache__/miner.cpython-312.pyc ADDED
Binary file (12.1 kB). View file
 
__pycache__/miner.cpython-313.pyc ADDED
Binary file (12.1 kB). View file
 
__pycache__/pitch.cpython-312.pyc ADDED
Binary file (30.9 kB). View file
 
__pycache__/player.cpython-312.pyc ADDED
Binary file (16.6 kB). View file
 
miner.py CHANGED
@@ -142,7 +142,7 @@ class Miner:
142
  # self._warmup_models(device)
143
 
144
  # Increase batch sizes for better GPU utilization
145
- self.player_batch_size = 64 # Increased from 32
146
  self.pitch_batch_size = 8 # Increased from 32
147
  print(f"✅ Keypoints Model Loaded")
148
 
@@ -155,6 +155,8 @@ class Miner:
155
  offset: int,
156
  n_keypoints: int,
157
  ) -> list[TVFrameResult]:
 
 
158
  player_batch_size = min(self.player_batch_size, len(batch_images))
159
  bboxes: dict[int, list[BoundingBox]] = {}
160
  while True:
@@ -198,6 +200,9 @@ class Miner:
198
  player_batch_size = min(self.player_batch_size, len(batch_images))
199
  else:
200
  raise e
 
 
 
201
 
202
  pitch_batch_size = min(self.pitch_batch_size, len(batch_images))
203
  keypoints: dict[int, list[tuple[int, int]]] = {}
@@ -254,6 +259,9 @@ class Miner:
254
  pitch_batch_size = min(self.pitch_batch_size, len(batch_images))
255
  else:
256
  raise e
 
 
 
257
 
258
  # Combine results
259
  results: list[TVFrameResult] = []
 
142
  # self._warmup_models(device)
143
 
144
  # Increase batch sizes for better GPU utilization
145
+ self.player_batch_size = 8 # Increased from 32
146
  self.pitch_batch_size = 8 # Increased from 32
147
  print(f"✅ Keypoints Model Loaded")
148
 
 
155
  offset: int,
156
  n_keypoints: int,
157
  ) -> list[TVFrameResult]:
158
+
159
+ print("\n🤖 Running predict_batch...")
160
  player_batch_size = min(self.player_batch_size, len(batch_images))
161
  bboxes: dict[int, list[BoundingBox]] = {}
162
  while True:
 
200
  player_batch_size = min(self.player_batch_size, len(batch_images))
201
  else:
202
  raise e
203
+ except Exception as e:
204
+ print(f"❌ Error during bbox prediction: {e}")
205
+ raise e
206
 
207
  pitch_batch_size = min(self.pitch_batch_size, len(batch_images))
208
  keypoints: dict[int, list[tuple[int, int]]] = {}
 
259
  pitch_batch_size = min(self.pitch_batch_size, len(batch_images))
260
  else:
261
  raise e
262
+ except Exception as e:
263
+ print(f"❌ Error during keypoints prediction: {e}")
264
+ raise e
265
 
266
  # Combine results
267
  results: list[TVFrameResult] = []