First model
Browse files- README.md +37 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- rocket_2.zip +3 -0
- rocket_2/_stable_baselines3_version +1 -0
- rocket_2/data +94 -0
- rocket_2/policy.optimizer.pth +3 -0
- rocket_2/policy.pth +3 -0
- rocket_2/pytorch_variables.pth +3 -0
- rocket_2/system_info.txt +7 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -521.97 +/- 149.88
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc05854ad30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc05854adc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc05854ae50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc05854aee0>", "_build": "<function ActorCriticPolicy._build at 0x7fc05854af70>", "forward": "<function ActorCriticPolicy.forward at 0x7fc058550040>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc0585500d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc058550160>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc0585501f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc058550280>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc058550310>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fc0585484e0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 131072, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671220460097614822, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABNU1j7W+QY/v0Y/Pe/1b7+BJB0/gLtYPQAAAAAAAAAAgN0CPmqriz8AP/Q+bLAmv7Nu672l34C9AAAAAAAAAABWHWy+q/JWP7o4A7/RSE6/b1xVPM5Gir4AAAAAAAAAAKaXxD1NzyU+40HzPOABlL8Xpfi9pJ6FvgAAAAAAAAAAYK0YvnxeqD/VvQy/MOWZvgzl+rxFAdi9AAAAAAAAAACAKly9ZNydP8p2X751y/C+UN60PVKmYDkAAAAAAAAAABoAGT0Hc+g+HhYfvXWQQr8DkhU+FoUKPgAAAAAAAAAAM/sZO0O/sz/KrnM+/jmXvhT7Mbtwyly9AAAAAAAAAACYtdm+Lgj4vDK5Ib6LLku/ARECv+43ED8AAIA/AAAAAEY4L74aqVw+xpwivrSEf79csRK+qmkbvgAAAAAAAAAAJtbDvfTpHz9PMaM9UUSDvxcS4zye/1A+AAAAAAAAAAAAtDa9eSGsPzrwS74HbqC+0aPUulro4r0AAAAAAAAAAPYvur6FFjo+o/9cvDvefL+1LIs8CBtyPgAAAAAAAAAAtgNevgj2Sj/W8fC8K4wUvzrc7b4YcrK9AAAAAAAAAAAza7y8RFe2PxBZRr8jPDM+XQ3vPMbhPj4AAAAAAAAAALMsjT2i9rA/1WhzPgf97r5/+G2+JpMJPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAABAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.3107200000000001, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIo5QQrKoCWcCUhpRSlIwBbJRLUYwBdJRHQFwQUD+zdDZ1fZQoaAZoCWgPQwh55XrbTDpRwJSGlFKUaBVLpGgWR0BcEEpRXOnmdX2UKGgGaAloD0MIZRpNLsYWSMCUhpRSlGgVS5ZoFkdAXBEny/bj+HV9lChoBmgJaA9DCCNKe4MvI1TAlIaUUpRoFUthaBZHQFwQ1JUYKpl1fZQoaAZoCWgPQwiQZ5dvfdlbwJSGlFKUaBVLXWgWR0BcESv5gw49dX2UKGgGaAloD0MIB9Dv+zdjWMCUhpRSlGgVS4FoFkdAXBPF0gbIcXV9lChoBmgJaA9DCCVdM/lm9UfAlIaUUpRoFUtvaBZHQFwUV4X40uV1fZQoaAZoCWgPQwhx/5Hp0HlCwJSGlFKUaBVLWWgWR0BcFEOy3Td+dX2UKGgGaAloD0MIuYrFbwrRXsCUhpRSlGgVS11oFkdAXBYO2AoXsXV9lChoBmgJaA9DCNPbn4uGKEfAlIaUUpRoFUtvaBZHQFwX8P4EfT11fZQoaAZoCWgPQwj5+ITsvBNDwJSGlFKUaBVLhmgWR0BcGmeYlY2bdX2UKGgGaAloD0MIZRcMrrnxTcCUhpRSlGgVS45oFkdAXBqvwEyLynV9lChoBmgJaA9DCBh9BWnG71PAlIaUUpRoFUtkaBZHQFwe6shgVoJ1fZQoaAZoCWgPQwgj3c8pyH85wJSGlFKUaBVLZGgWR0BcH4dhiLEUdX2UKGgGaAloD0MImE2AYflZRsCUhpRSlGgVS3FoFkdAXCHGkvboKXV9lChoBmgJaA9DCDDysiYWSlPAlIaUUpRoFUtBaBZHQFwjZjx0+1V1fZQoaAZoCWgPQwgM5q+QuQxVwJSGlFKUaBVLUmgWR0BcJGuPmxMWdX2UKGgGaAloD0MI10//WfOnS8CUhpRSlGgVS1doFkdAXCV1xKg7HXV9lChoBmgJaA9DCFAYlGk0kFHAlIaUUpRoFUtZaBZHQFwlqCHymQ91fZQoaAZoCWgPQwhEw2LUtXBQwJSGlFKUaBVLd2gWR0BcKIphF3INdX2UKGgGaAloD0MI3UJXIlDtK8CUhpRSlGgVS1toFkdAXC0lTm4iHXV9lChoBmgJaA9DCATG+gYmlU3AlIaUUpRoFUuEaBZHQFwvkiliz9l1fZQoaAZoCWgPQwg7xhUXR4tPwJSGlFKUaBVLdmgWR0BcL24Vh1DCdX2UKGgGaAloD0MIIXam0PkqYsCUhpRSlGgVS3RoFkdAXC9nHvMKTnV9lChoBmgJaA9DCD0MrU7OIVvAlIaUUpRoFUtcaBZHQFwwPWhAWzp1fZQoaAZoCWgPQwhTk+ANaWg+wJSGlFKUaBVLU2gWR0BcMwDA8B+4dX2UKGgGaAloD0MIGZEotKynVMCUhpRSlGgVS5FoFkdAXDLp3X7LuHV9lChoBmgJaA9DCIJV9fI7jUTAlIaUUpRoFUt8aBZHQFwzg5zYEnt1fZQoaAZoCWgPQwg+ey5Tk7xNwJSGlFKUaBVLSGgWR0BcNtdzGPxQdX2UKGgGaAloD0MI3XwjumdZQMCUhpRSlGgVS3loFkdAXDcl1KXfInV9lChoBmgJaA9DCARXeQJh5lbAlIaUUpRoFUt4aBZHQFw8FqzqrzZ1fZQoaAZoCWgPQwjyYfay7dZNwJSGlFKUaBVLQ2gWR0BcP7muDBdldX2UKGgGaAloD0MIC+2cZoFNWMCUhpRSlGgVS0poFkdAXEFTVDrquHV9lChoBmgJaA9DCIUlHlA2v1HAlIaUUpRoFUuKaBZHQFxFzkIX0oV1fZQoaAZoCWgPQwhO7+L9uNtNwJSGlFKUaBVLjWgWR0BcRYu5BkZrdX2UKGgGaAloD0MIQQ+1bRiHTcCUhpRSlGgVS15oFkdAXEZ+G47Rv3V9lChoBmgJaA9DCMnmqnmODVjAlIaUUpRoFUtcaBZHQFxG6HTI/7l1fZQoaAZoCWgPQwhosn+eBvg8wJSGlFKUaBVLm2gWR0BcR3hOxjaxdX2UKGgGaAloD0MIafzCK0m0UcCUhpRSlGgVS4loFkdAXEcXUH6dlXV9lChoBmgJaA9DCEFJgQUwr0bAlIaUUpRoFUtUaBZHQFxHbdadMCd1fZQoaAZoCWgPQwgGhNbDlz9NwJSGlFKUaBVLWmgWR0BcSOANG3F2dX2UKGgGaAloD0MIi98UVirYJcCUhpRSlGgVS5JoFkdAXExFBppN9HV9lChoBmgJaA9DCKkVpu81OlnAlIaUUpRoFUtvaBZHQFxOXZGrjo91fZQoaAZoCWgPQwhVMCqpE+lQwJSGlFKUaBVLkGgWR0BcUExEfDDTdX2UKGgGaAloD0MIYYxIFFrWC8CUhpRSlGgVS21oFkdAXFE//vOQhnV9lChoBmgJaA9DCD7pRIKphVbAlIaUUpRoFUtJaBZHQFxXQ5myxA11fZQoaAZoCWgPQwhLzR5oBbxVwJSGlFKUaBVLT2gWR0BcWHMUypJgdX2UKGgGaAloD0MIG/FkNzMYS8CUhpRSlGgVS45oFkdAXFmCxu89OnV9lChoBmgJaA9DCO6x9KELsFzAlIaUUpRoFUtuaBZHQFxcJYDDCP91fZQoaAZoCWgPQwiHxahrbcFhwJSGlFKUaBVLhWgWR0BcXKFmFrVOdX2UKGgGaAloD0MIfNXKhF9jUcCUhpRSlGgVS4BoFkdAXF8BOpKjBXV9lChoBmgJaA9DCELNkCqK913AlIaUUpRoFUtxaBZHQFxitGus90R1fZQoaAZoCWgPQwgf9GxWfVJTwJSGlFKUaBVLeGgWR0BcZDH4oJAudX2UKGgGaAloD0MIgehJmdQkTcCUhpRSlGgVS2RoFkdAXGSgpSaVlnV9lChoBmgJaA9DCMwollta7RrAlIaUUpRoFUt+aBZHQFxlnFHavid1fZQoaAZoCWgPQwjKMVncfwFWwJSGlFKUaBVLgGgWR0BcZcFUyYXwdX2UKGgGaAloD0MIIPEr1nAdM8CUhpRSlGgVS2BoFkdAXGYAuIyj6HV9lChoBmgJaA9DCDS9xFimclDAlIaUUpRoFUtEaBZHQFxqMTviLl51fZQoaAZoCWgPQwh9dytLdL9VwJSGlFKUaBVLZmgWR0Bcai6lLvkSdX2UKGgGaAloD0MIJZASuza0a8CUhpRSlGgVS5BoFkdAXGu3Td+G5HV9lChoBmgJaA9DCL0d4bTgs1PAlIaUUpRoFUtdaBZHQFxt+VC5Vfh1fZQoaAZoCWgPQwisOqsF9rRPwJSGlFKUaBVLo2gWR0Bcbq6BiCrcdX2UKGgGaAloD0MIZr/udOfdUMCUhpRSlGgVS3JoFkdAXHQV45cTrXV9lChoBmgJaA9DCKzJU1bTDVDAlIaUUpRoFUtmaBZHQFx017IDHOt1fZQoaAZoCWgPQwg5RNycSltQwJSGlFKUaBVLRGgWR0Bcdb+98JD3dX2UKGgGaAloD0MIJ2ppboVIOsCUhpRSlGgVS1NoFkdAXHmu5jH4oXV9lChoBmgJaA9DCOW5vg8HZ1TAlIaUUpRoFUusaBZHQFx6TqSowVV1fZQoaAZoCWgPQwgJw4Al18RmwJSGlFKUaBVLaWgWR0BcfE2DQJHBdX2UKGgGaAloD0MIthDkoIRRS8CUhpRSlGgVS2ZoFkdAXHz5DZ13dXV9lChoBmgJaA9DCIOmJVZGszjAlIaUUpRoFUuUaBZHQFyA1rZamoB1fZQoaAZoCWgPQwiLcJNRZfxhwJSGlFKUaBVLjmgWR0BcgcWbgCOndX2UKGgGaAloD0MIU7DG2XTqSsCUhpRSlGgVS2BoFkdAXIGqABkqc3V9lChoBmgJaA9DCCOHiJtT91PAlIaUUpRoFUuEaBZHQFyEqkdmxt51fZQoaAZoCWgPQwi7JTlgV9NSwJSGlFKUaBVLXmgWR0BchSxFAmiQdX2UKGgGaAloD0MIdjOjHw15T8CUhpRSlGgVS3hoFkdAXIkV58jRlnV9lChoBmgJaA9DCNtrQe+NQFDAlIaUUpRoFUuYaBZHQFyK3xnWatt1fZQoaAZoCWgPQwgy5q4l5LM1wJSGlFKUaBVLjmgWR0Bcja15Sm65dX2UKGgGaAloD0MIq3ZNSGswT8CUhpRSlGgVS2VoFkdAXI9kauOjqXV9lChoBmgJaA9DCBYvFobIGTPAlIaUUpRoFUuIaBZHQFyQ6xxDLKV1fZQoaAZoCWgPQwjp8Xub/vRcwJSGlFKUaBVLd2gWR0BcklEJBw+/dX2UKGgGaAloD0MIGZKTiVt1VMCUhpRSlGgVS3BoFkdAXJXZ39rGi3V9lChoBmgJaA9DCJw1eF+VXUnAlIaUUpRoFUtxaBZHQFyWpPykKu11fZQoaAZoCWgPQwg5mE2AYbNMwJSGlFKUaBVLkGgWR0BcmROk+HJtdX2UKGgGaAloD0MIKTxodt3TOcCUhpRSlGgVS2JoFkdAXJmTdLxqf3V9lChoBmgJaA9DCHFxVG6iREPAlIaUUpRoFUthaBZHQFyaHDaXa8J1fZQoaAZoCWgPQwh1AwXeycFNwJSGlFKUaBVLVmgWR0BcmnKW9lErdX2UKGgGaAloD0MIgsR29wC9TMCUhpRSlGgVS1poFkdAXJvLlmvnsHV9lChoBmgJaA9DCHujVpi+H0PAlIaUUpRoFUtPaBZHQFyc81n/T9d1fZQoaAZoCWgPQwgD6zh+qI5PwJSGlFKUaBVLg2gWR0BcnNYjjaPCdX2UKGgGaAloD0MITdnpB3XkUcCUhpRSlGgVS35oFkdAXKDkYGdI5HV9lChoBmgJaA9DCPhrskY9ODHAlIaUUpRoFUtZaBZHQFyg3rUsnRd1fZQoaAZoCWgPQwjvHqD7coYJQJSGlFKUaBVLomgWR0BcpMtTUAktdX2UKGgGaAloD0MIARWOIJWJVMCUhpRSlGgVS21oFkdAXKfQla8pTnV9lChoBmgJaA9DCOoihbLwAlDAlIaUUpRoFUtzaBZHQFyspWV/tpp1fZQoaAZoCWgPQwgCnN7F+zZTwJSGlFKUaBVLT2gWR0BcsDjWCmMwdX2UKGgGaAloD0MIUYNpGD73UsCUhpRSlGgVS1xoFkdAXLDAO8TSLXV9lChoBmgJaA9DCIxIFFrWZlDAlIaUUpRoFUuLaBZHQFyxS8J2MbZ1fZQoaAZoCWgPQwitvroqUHNTwJSGlFKUaBVLZWgWR0BcskGNaQmvdX2UKGgGaAloD0MI6Pf9mxeEWsCUhpRSlGgVS4RoFkdAXLZEtuk1uXV9lChoBmgJaA9DCIGyKVd4EzTAlIaUUpRoFUuVaBZHQFy27Y02tMh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 40, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (84 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -521.9680043421511, "std_reward": 149.88346431427868, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-16T19:58:33.707020"}
|
rocket_2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f73484c6d4c7f3754a914738bc461ee21237be3e829b732c1f2e733b33bd0a62
|
3 |
+
size 147080
|
rocket_2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
rocket_2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fc05854ad30>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc05854adc0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc05854ae50>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc05854aee0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fc05854af70>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fc058550040>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc0585500d0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fc058550160>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc0585501f0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc058550280>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc058550310>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fc0585484e0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 131072,
|
46 |
+
"_total_timesteps": 100000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1671220460097614822,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABNU1j7W+QY/v0Y/Pe/1b7+BJB0/gLtYPQAAAAAAAAAAgN0CPmqriz8AP/Q+bLAmv7Nu672l34C9AAAAAAAAAABWHWy+q/JWP7o4A7/RSE6/b1xVPM5Gir4AAAAAAAAAAKaXxD1NzyU+40HzPOABlL8Xpfi9pJ6FvgAAAAAAAAAAYK0YvnxeqD/VvQy/MOWZvgzl+rxFAdi9AAAAAAAAAACAKly9ZNydP8p2X751y/C+UN60PVKmYDkAAAAAAAAAABoAGT0Hc+g+HhYfvXWQQr8DkhU+FoUKPgAAAAAAAAAAM/sZO0O/sz/KrnM+/jmXvhT7Mbtwyly9AAAAAAAAAACYtdm+Lgj4vDK5Ib6LLku/ARECv+43ED8AAIA/AAAAAEY4L74aqVw+xpwivrSEf79csRK+qmkbvgAAAAAAAAAAJtbDvfTpHz9PMaM9UUSDvxcS4zye/1A+AAAAAAAAAAAAtDa9eSGsPzrwS74HbqC+0aPUulro4r0AAAAAAAAAAPYvur6FFjo+o/9cvDvefL+1LIs8CBtyPgAAAAAAAAAAtgNevgj2Sj/W8fC8K4wUvzrc7b4YcrK9AAAAAAAAAAAza7y8RFe2PxBZRr8jPDM+XQ3vPMbhPj4AAAAAAAAAALMsjT2i9rA/1WhzPgf97r5/+G2+JpMJPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAABAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.3107200000000001,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIo5QQrKoCWcCUhpRSlIwBbJRLUYwBdJRHQFwQUD+zdDZ1fZQoaAZoCWgPQwh55XrbTDpRwJSGlFKUaBVLpGgWR0BcEEpRXOnmdX2UKGgGaAloD0MIZRpNLsYWSMCUhpRSlGgVS5ZoFkdAXBEny/bj+HV9lChoBmgJaA9DCCNKe4MvI1TAlIaUUpRoFUthaBZHQFwQ1JUYKpl1fZQoaAZoCWgPQwiQZ5dvfdlbwJSGlFKUaBVLXWgWR0BcESv5gw49dX2UKGgGaAloD0MIB9Dv+zdjWMCUhpRSlGgVS4FoFkdAXBPF0gbIcXV9lChoBmgJaA9DCCVdM/lm9UfAlIaUUpRoFUtvaBZHQFwUV4X40uV1fZQoaAZoCWgPQwhx/5Hp0HlCwJSGlFKUaBVLWWgWR0BcFEOy3Td+dX2UKGgGaAloD0MIuYrFbwrRXsCUhpRSlGgVS11oFkdAXBYO2AoXsXV9lChoBmgJaA9DCNPbn4uGKEfAlIaUUpRoFUtvaBZHQFwX8P4EfT11fZQoaAZoCWgPQwj5+ITsvBNDwJSGlFKUaBVLhmgWR0BcGmeYlY2bdX2UKGgGaAloD0MIZRcMrrnxTcCUhpRSlGgVS45oFkdAXBqvwEyLynV9lChoBmgJaA9DCBh9BWnG71PAlIaUUpRoFUtkaBZHQFwe6shgVoJ1fZQoaAZoCWgPQwgj3c8pyH85wJSGlFKUaBVLZGgWR0BcH4dhiLEUdX2UKGgGaAloD0MImE2AYflZRsCUhpRSlGgVS3FoFkdAXCHGkvboKXV9lChoBmgJaA9DCDDysiYWSlPAlIaUUpRoFUtBaBZHQFwjZjx0+1V1fZQoaAZoCWgPQwgM5q+QuQxVwJSGlFKUaBVLUmgWR0BcJGuPmxMWdX2UKGgGaAloD0MI10//WfOnS8CUhpRSlGgVS1doFkdAXCV1xKg7HXV9lChoBmgJaA9DCFAYlGk0kFHAlIaUUpRoFUtZaBZHQFwlqCHymQ91fZQoaAZoCWgPQwhEw2LUtXBQwJSGlFKUaBVLd2gWR0BcKIphF3INdX2UKGgGaAloD0MI3UJXIlDtK8CUhpRSlGgVS1toFkdAXC0lTm4iHXV9lChoBmgJaA9DCATG+gYmlU3AlIaUUpRoFUuEaBZHQFwvkiliz9l1fZQoaAZoCWgPQwg7xhUXR4tPwJSGlFKUaBVLdmgWR0BcL24Vh1DCdX2UKGgGaAloD0MIIXam0PkqYsCUhpRSlGgVS3RoFkdAXC9nHvMKTnV9lChoBmgJaA9DCD0MrU7OIVvAlIaUUpRoFUtcaBZHQFwwPWhAWzp1fZQoaAZoCWgPQwhTk+ANaWg+wJSGlFKUaBVLU2gWR0BcMwDA8B+4dX2UKGgGaAloD0MIGZEotKynVMCUhpRSlGgVS5FoFkdAXDLp3X7LuHV9lChoBmgJaA9DCIJV9fI7jUTAlIaUUpRoFUt8aBZHQFwzg5zYEnt1fZQoaAZoCWgPQwg+ey5Tk7xNwJSGlFKUaBVLSGgWR0BcNtdzGPxQdX2UKGgGaAloD0MI3XwjumdZQMCUhpRSlGgVS3loFkdAXDcl1KXfInV9lChoBmgJaA9DCARXeQJh5lbAlIaUUpRoFUt4aBZHQFw8FqzqrzZ1fZQoaAZoCWgPQwjyYfay7dZNwJSGlFKUaBVLQ2gWR0BcP7muDBdldX2UKGgGaAloD0MIC+2cZoFNWMCUhpRSlGgVS0poFkdAXEFTVDrquHV9lChoBmgJaA9DCIUlHlA2v1HAlIaUUpRoFUuKaBZHQFxFzkIX0oV1fZQoaAZoCWgPQwhO7+L9uNtNwJSGlFKUaBVLjWgWR0BcRYu5BkZrdX2UKGgGaAloD0MIQQ+1bRiHTcCUhpRSlGgVS15oFkdAXEZ+G47Rv3V9lChoBmgJaA9DCMnmqnmODVjAlIaUUpRoFUtcaBZHQFxG6HTI/7l1fZQoaAZoCWgPQwhosn+eBvg8wJSGlFKUaBVLm2gWR0BcR3hOxjaxdX2UKGgGaAloD0MIafzCK0m0UcCUhpRSlGgVS4loFkdAXEcXUH6dlXV9lChoBmgJaA9DCEFJgQUwr0bAlIaUUpRoFUtUaBZHQFxHbdadMCd1fZQoaAZoCWgPQwgGhNbDlz9NwJSGlFKUaBVLWmgWR0BcSOANG3F2dX2UKGgGaAloD0MIi98UVirYJcCUhpRSlGgVS5JoFkdAXExFBppN9HV9lChoBmgJaA9DCKkVpu81OlnAlIaUUpRoFUtvaBZHQFxOXZGrjo91fZQoaAZoCWgPQwhVMCqpE+lQwJSGlFKUaBVLkGgWR0BcUExEfDDTdX2UKGgGaAloD0MIYYxIFFrWC8CUhpRSlGgVS21oFkdAXFE//vOQhnV9lChoBmgJaA9DCD7pRIKphVbAlIaUUpRoFUtJaBZHQFxXQ5myxA11fZQoaAZoCWgPQwhLzR5oBbxVwJSGlFKUaBVLT2gWR0BcWHMUypJgdX2UKGgGaAloD0MIG/FkNzMYS8CUhpRSlGgVS45oFkdAXFmCxu89OnV9lChoBmgJaA9DCO6x9KELsFzAlIaUUpRoFUtuaBZHQFxcJYDDCP91fZQoaAZoCWgPQwiHxahrbcFhwJSGlFKUaBVLhWgWR0BcXKFmFrVOdX2UKGgGaAloD0MIfNXKhF9jUcCUhpRSlGgVS4BoFkdAXF8BOpKjBXV9lChoBmgJaA9DCELNkCqK913AlIaUUpRoFUtxaBZHQFxitGus90R1fZQoaAZoCWgPQwgf9GxWfVJTwJSGlFKUaBVLeGgWR0BcZDH4oJAudX2UKGgGaAloD0MIgehJmdQkTcCUhpRSlGgVS2RoFkdAXGSgpSaVlnV9lChoBmgJaA9DCMwollta7RrAlIaUUpRoFUt+aBZHQFxlnFHavid1fZQoaAZoCWgPQwjKMVncfwFWwJSGlFKUaBVLgGgWR0BcZcFUyYXwdX2UKGgGaAloD0MIIPEr1nAdM8CUhpRSlGgVS2BoFkdAXGYAuIyj6HV9lChoBmgJaA9DCDS9xFimclDAlIaUUpRoFUtEaBZHQFxqMTviLl51fZQoaAZoCWgPQwh9dytLdL9VwJSGlFKUaBVLZmgWR0Bcai6lLvkSdX2UKGgGaAloD0MIJZASuza0a8CUhpRSlGgVS5BoFkdAXGu3Td+G5HV9lChoBmgJaA9DCL0d4bTgs1PAlIaUUpRoFUtdaBZHQFxt+VC5Vfh1fZQoaAZoCWgPQwisOqsF9rRPwJSGlFKUaBVLo2gWR0Bcbq6BiCrcdX2UKGgGaAloD0MIZr/udOfdUMCUhpRSlGgVS3JoFkdAXHQV45cTrXV9lChoBmgJaA9DCKzJU1bTDVDAlIaUUpRoFUtmaBZHQFx017IDHOt1fZQoaAZoCWgPQwg5RNycSltQwJSGlFKUaBVLRGgWR0Bcdb+98JD3dX2UKGgGaAloD0MIJ2ppboVIOsCUhpRSlGgVS1NoFkdAXHmu5jH4oXV9lChoBmgJaA9DCOW5vg8HZ1TAlIaUUpRoFUusaBZHQFx6TqSowVV1fZQoaAZoCWgPQwgJw4Al18RmwJSGlFKUaBVLaWgWR0BcfE2DQJHBdX2UKGgGaAloD0MIthDkoIRRS8CUhpRSlGgVS2ZoFkdAXHz5DZ13dXV9lChoBmgJaA9DCIOmJVZGszjAlIaUUpRoFUuUaBZHQFyA1rZamoB1fZQoaAZoCWgPQwiLcJNRZfxhwJSGlFKUaBVLjmgWR0BcgcWbgCOndX2UKGgGaAloD0MIU7DG2XTqSsCUhpRSlGgVS2BoFkdAXIGqABkqc3V9lChoBmgJaA9DCCOHiJtT91PAlIaUUpRoFUuEaBZHQFyEqkdmxt51fZQoaAZoCWgPQwi7JTlgV9NSwJSGlFKUaBVLXmgWR0BchSxFAmiQdX2UKGgGaAloD0MIdjOjHw15T8CUhpRSlGgVS3hoFkdAXIkV58jRlnV9lChoBmgJaA9DCNtrQe+NQFDAlIaUUpRoFUuYaBZHQFyK3xnWatt1fZQoaAZoCWgPQwgy5q4l5LM1wJSGlFKUaBVLjmgWR0Bcja15Sm65dX2UKGgGaAloD0MIq3ZNSGswT8CUhpRSlGgVS2VoFkdAXI9kauOjqXV9lChoBmgJaA9DCBYvFobIGTPAlIaUUpRoFUuIaBZHQFyQ6xxDLKV1fZQoaAZoCWgPQwjp8Xub/vRcwJSGlFKUaBVLd2gWR0BcklEJBw+/dX2UKGgGaAloD0MIGZKTiVt1VMCUhpRSlGgVS3BoFkdAXJXZ39rGi3V9lChoBmgJaA9DCJw1eF+VXUnAlIaUUpRoFUtxaBZHQFyWpPykKu11fZQoaAZoCWgPQwg5mE2AYbNMwJSGlFKUaBVLkGgWR0BcmROk+HJtdX2UKGgGaAloD0MIKTxodt3TOcCUhpRSlGgVS2JoFkdAXJmTdLxqf3V9lChoBmgJaA9DCHFxVG6iREPAlIaUUpRoFUthaBZHQFyaHDaXa8J1fZQoaAZoCWgPQwh1AwXeycFNwJSGlFKUaBVLVmgWR0BcmnKW9lErdX2UKGgGaAloD0MIgsR29wC9TMCUhpRSlGgVS1poFkdAXJvLlmvnsHV9lChoBmgJaA9DCHujVpi+H0PAlIaUUpRoFUtPaBZHQFyc81n/T9d1fZQoaAZoCWgPQwgD6zh+qI5PwJSGlFKUaBVLg2gWR0BcnNYjjaPCdX2UKGgGaAloD0MITdnpB3XkUcCUhpRSlGgVS35oFkdAXKDkYGdI5HV9lChoBmgJaA9DCPhrskY9ODHAlIaUUpRoFUtZaBZHQFyg3rUsnRd1fZQoaAZoCWgPQwjvHqD7coYJQJSGlFKUaBVLomgWR0BcpMtTUAktdX2UKGgGaAloD0MIARWOIJWJVMCUhpRSlGgVS21oFkdAXKfQla8pTnV9lChoBmgJaA9DCOoihbLwAlDAlIaUUpRoFUtzaBZHQFyspWV/tpp1fZQoaAZoCWgPQwgCnN7F+zZTwJSGlFKUaBVLT2gWR0BcsDjWCmMwdX2UKGgGaAloD0MIUYNpGD73UsCUhpRSlGgVS1xoFkdAXLDAO8TSLXV9lChoBmgJaA9DCIxIFFrWZlDAlIaUUpRoFUuLaBZHQFyxS8J2MbZ1fZQoaAZoCWgPQwitvroqUHNTwJSGlFKUaBVLZWgWR0BcskGNaQmvdX2UKGgGaAloD0MI6Pf9mxeEWsCUhpRSlGgVS4RoFkdAXLZEtuk1uXV9lChoBmgJaA9DCIGyKVd4EzTAlIaUUpRoFUuVaBZHQFy27Y02tMh1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 40,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.99,
|
81 |
+
"gae_lambda": 0.95,
|
82 |
+
"ent_coef": 0.0,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 10,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
rocket_2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:87f28ee7d7961fc62ad24a4f06d823afe8e8b744f84400795003099af763d644
|
3 |
+
size 87929
|
rocket_2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7f6aa817f076b330e72cf89e851a7a31214fcf02934f5796c54f420b9cedba92
|
3 |
+
size 43201
|
rocket_2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
rocket_2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.8.16
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0+cu116
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|