glenn2's picture
Better model
c1449de
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fc05854ad30>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc05854adc0>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc05854ae50>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc05854aee0>",
"_build": "<function ActorCriticPolicy._build at 0x7fc05854af70>",
"forward": "<function ActorCriticPolicy.forward at 0x7fc058550040>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc0585500d0>",
"_predict": "<function ActorCriticPolicy._predict at 0x7fc058550160>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc0585501f0>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc058550280>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc058550310>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc_data object at 0x7fc0585484e0>"
},
"verbose": 1,
"policy_kwargs": {},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
"dtype": "float32",
"_shape": [
8
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False]",
"bounded_above": "[False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.discrete.Discrete'>",
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
"n": 4,
"_shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 16,
"num_timesteps": 8028160,
"_total_timesteps": 8000000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1671220775957958632,
"learning_rate": 0.0003,
"tensorboard_log": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALOAcz4yG4Y/UmD3PrKfEr/G9ek+rdKUPgAAAAAAAAAAjSFBPv8cAj9j51W+RTBXv1TFgD7edpu+AAAAAAAAAACa9wG8Tqu+P9JBqr2wRZA+32W3uq/guLwAAAAAAAAAAMCvpj1Fffk87JcHvh+rob5pbwu9VdawvQAAAAAAAAAA4912voHYfj+KDL6+5j9OvytP8r5K2xG+AAAAAAAAAADmLbo97DmPuWdSt77GlkC+7GElvgBwhT8AAIA/AAAAALOaU72vPEU/esZcvebrkL+b6Ba9K7ZTvQAAAAAAAAAApha1vQg2uz9DPRW/QQgJvV9TmjvK8K28AAAAAAAAAAATWBM+FkkhPz23oLr7nEe/t/7BPnu1NL4AAAAAAAAAALOSDT3Xw3i5omRKtKuJD65WpBm86r2aMwAAgD8AAIA/mv/JvIPwYj26fIE9BAXHvoW0XrwNwXQ9AAAAAAAAAABax4C9sdKCP61gSr7VYmO/zktAvpCHBr4AAAAAAAAAAKbxs73hDp26A/xUuxNrjzw7NoA7IiR5vQAAAAAAAIA/2tGGPeHNtz/G7jE/Ly2OPH2oW7ze5Po9AAAAAAAAAAAzqpI9FGSFuvz8AjoAbs+ybBo8u2anFrkAAIA/AACAP80PBb14/t09vsCaPAdsAr/BH3y9bPsYPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.0035199999999999676,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMImgZF84Bfc0CUhpRSlIwBbJRLlowBdJRHQMEXlgmqo611fZQoaAZoCWgPQwgctcL0PU1yQJSGlFKUaBVLfWgWR0DBF5e7e2uxdX2UKGgGaAloD0MIqiuf5XmrcECUhpRSlGgVS5poFkdAwRef7NSqEXV9lChoBmgJaA9DCG+5+rFJFHJAlIaUUpRoFUuxaBZHQMEXpJ6yB091fZQoaAZoCWgPQwifr1kuW4NyQJSGlFKUaBVLtmgWR0DBF6pVsDW9dX2UKGgGaAloD0MI845TdKQMckCUhpRSlGgVS6RoFkdAwResZF5OanV9lChoBmgJaA9DCLwDPGlhX3NAlIaUUpRoFUubaBZHQMEXtkd/8VJ1fZQoaAZoCWgPQwi+wRcmk9JxQJSGlFKUaBVLfWgWR0DBF7kgKWszdX2UKGgGaAloD0MIX9Gt1/SmckCUhpRSlGgVS5NoFkdAwRe/W5painV9lChoBmgJaA9DCJOoF3waBHRAlIaUUpRoFUvFaBZHQMEXwZr56+p1fZQoaAZoCWgPQwitiJro83JvQJSGlFKUaBVLmmgWR0DBF91l05lwdX2UKGgGaAloD0MIKEUr98Kwc0CUhpRSlGgVS7VoFkdAwRfiP4EfT3V9lChoBmgJaA9DCC8yAb8GsnNAlIaUUpRoFUuraBZHQMEX4/S6UaB1fZQoaAZoCWgPQwi4k4jwr/lxQJSGlFKUaBVLpmgWR0DBF+VLeyiVdX2UKGgGaAloD0MIbTZWYl56ckCUhpRSlGgVS51oFkdAwRfmfywwCnV9lChoBmgJaA9DCFuzlZc8VHNAlIaUUpRoFUuWaBZHQMEX6vnSv1V1fZQoaAZoCWgPQwjc8Lvp1uRzQJSGlFKUaBVLrGgWR0DBF/WbobGWdX2UKGgGaAloD0MIrHMMyB5wc0CUhpRSlGgVS8loFkdAwRgAZssQNHV9lChoBmgJaA9DCPceLjnu23BAlIaUUpRoFUuCaBZHQMEYA5nctXh1fZQoaAZoCWgPQwgnhuRk4tJwQJSGlFKUaBVLnGgWR0DBGASiqQzUdX2UKGgGaAloD0MIAoQPJVo/ckCUhpRSlGgVS6JoFkdAwRgF2lEZznV9lChoBmgJaA9DCGBXk6csKHRAlIaUUpRoFUu7aBZHQMEYCUEX+ER1fZQoaAZoCWgPQwiVfsLZrTxzQJSGlFKUaBVLj2gWR0DBGBC/47A+dX2UKGgGaAloD0MIb6DAO/kGdECUhpRSlGgVS8toFkdAwRgVadtl7XV9lChoBmgJaA9DCA5mE2BYl3NAlIaUUpRoFUuqaBZHQMEYFebmU4d1fZQoaAZoCWgPQwhyxFp8ShtyQJSGlFKUaBVLqGgWR0DBGB8srd30dX2UKGgGaAloD0MIFxHF5E1MckCUhpRSlGgVS4FoFkdAwRgqXXRPXXV9lChoBmgJaA9DCKcFL/oKsnJAlIaUUpRoFUuRaBZHQMEYMJBgNPR1fZQoaAZoCWgPQwjqPgCpDdxwQJSGlFKUaBVLj2gWR0DBGDD6P8yfdX2UKGgGaAloD0MI4WHaN7dJckCUhpRSlGgVS6FoFkdAwRg1FWGRFXV9lChoBmgJaA9DCPm6DP/pEnNAlIaUUpRoFUumaBZHQMEYP1JcxCZ1fZQoaAZoCWgPQwjoTrD/OvFzQJSGlFKUaBVLoGgWR0DBGEBWilBQdX2UKGgGaAloD0MInDOitHfPckCUhpRSlGgVS5VoFkdAwRhESxqwhXV9lChoBmgJaA9DCHU/pyD/03JAlIaUUpRoFUuAaBZHQMEYRjVQQ+V1fZQoaAZoCWgPQwiVKeYg6BBwQJSGlFKUaBVLkGgWR0DBGFDW07bMdX2UKGgGaAloD0MIi1JCsGoScECUhpRSlGgVS5ZoFkdAwRhXhQ3xWnV9lChoBmgJaA9DCGoTJ/c7Mm9AlIaUUpRoFUujaBZHQMEYWggX/HZ1fZQoaAZoCWgPQwieRe9UAP5zQJSGlFKUaBVLtmgWR0DBGGBd8iOedX2UKGgGaAloD0MIMdEgBY9NcUCUhpRSlGgVS6RoFkdAwRhnA9FF2HV9lChoBmgJaA9DCGCxhoucyXNAlIaUUpRoFUubaBZHQMEYZ4Yzi0h1fZQoaAZoCWgPQwi63ct9sh9xQJSGlFKUaBVLpGgWR0DBGGvReC04dX2UKGgGaAloD0MIIVwBhbpec0CUhpRSlGgVS6poFkdAwRh5uVHFxXV9lChoBmgJaA9DCNAKDFkdQ3NAlIaUUpRoFUuKaBZHQMEYfrXlKbt1fZQoaAZoCWgPQwgAN4sXi8xwQJSGlFKUaBVLoGgWR0DBGIZXp4bCdX2UKGgGaAloD0MIP6n26fgDc0CUhpRSlGgVS6RoFkdAwRiJBvaURnV9lChoBmgJaA9DCEAxsmTOiXNAlIaUUpRoFUuxaBZHQMEYicRlHz91fZQoaAZoCWgPQwgZWMfxg9RyQJSGlFKUaBVLjGgWR0DBGI+uLaVVdX2UKGgGaAloD0MItYzUe+oUc0CUhpRSlGgVS4doFkdAwRiZOzIFNnV9lChoBmgJaA9DCF0z+Wbbv3FAlIaUUpRoFUuraBZHQMEYmvCVKPJ1fZQoaAZoCWgPQwjJA5FFmgZ0QJSGlFKUaBVLsGgWR0DBGJ5txdY5dX2UKGgGaAloD0MIBK3AkJWRckCUhpRSlGgVS7hoFkdAwRioQsf7rXV9lChoBmgJaA9DCI8zTdj+uHJAlIaUUpRoFUuZaBZHQMEYq1KXfIl1fZQoaAZoCWgPQwhjJlEveAVyQJSGlFKUaBVLpGgWR0DBGK6rtE5RdX2UKGgGaAloD0MIjpHsEWoucECUhpRSlGgVS49oFkdAwRiyg+Qlr3V9lChoBmgJaA9DCIf58gIsD3NAlIaUUpRoFUugaBZHQMEYtMnRb8p1fZQoaAZoCWgPQwgWhzO/GjBxQJSGlFKUaBVLmWgWR0DBGLwizLOidX2UKGgGaAloD0MIJ/kRvyLDcUCUhpRSlGgVS6BoFkdAwRi7i/fwZ3V9lChoBmgJaA9DCDBl4IAWIHJAlIaUUpRoFUt3aBZHQMEY2P/aQFN1fZQoaAZoCWgPQwj0qPi/Y7dyQJSGlFKUaBVLl2gWR0DBGNpKYiPidX2UKGgGaAloD0MImDPbFbq3cECUhpRSlGgVS5poFkdAwRjbVz6rNnV9lChoBmgJaA9DCPiJA+i3cHNAlIaUUpRoFUu8aBZHQMEY3vzOHFh1fZQoaAZoCWgPQwhBDHTti79zQJSGlFKUaBVLpmgWR0DBGN94A0bcdX2UKGgGaAloD0MI8nwG1Fuoc0CUhpRSlGgVS7ZoFkdAwRjgv8qFy3V9lChoBmgJaA9DCASOBBosbHFAlIaUUpRoFUujaBZHQMEY5qiXY151fZQoaAZoCWgPQwj+DG/WICtzQJSGlFKUaBVLo2gWR0DBGPVeF+NMdX2UKGgGaAloD0MIWz/9Z40nckCUhpRSlGgVS45oFkdAwRj67muDBnV9lChoBmgJaA9DCEbRAx/DJHBAlIaUUpRoFUucaBZHQMEY/CBGx2V1fZQoaAZoCWgPQwixpUdTfZhwQJSGlFKUaBVLfWgWR0DBGQB1V5rydX2UKGgGaAloD0MIyVht/p91cUCUhpRSlGgVS8loFkdAwRkGVKPGQ3V9lChoBmgJaA9DCJjCg2ZX229AlIaUUpRoFUuJaBZHQMEZBl3Y+St1fZQoaAZoCWgPQwjHR4szhuZyQJSGlFKUaBVLrWgWR0DBGQhw++uedX2UKGgGaAloD0MIIAvRIfAjckCUhpRSlGgVS59oFkdAwRkK7o0Q9XV9lChoBmgJaA9DCJYlOstsjHNAlIaUUpRoFUuuaBZHQMEZEFkYoAp1fZQoaAZoCWgPQwgo0v2cgkBzQJSGlFKUaBVLlGgWR0DBGS05EMLGdX2UKGgGaAloD0MIRwA3i1dkcECUhpRSlGgVS59oFkdAwRkt1yvLYHV9lChoBmgJaA9DCK+V0F3SW3NAlIaUUpRoFUumaBZHQMEZMyYoiLV1fZQoaAZoCWgPQwh5BaInZadxQJSGlFKUaBVLqWgWR0DBGTn1tfoidX2UKGgGaAloD0MIUyKJXoa7ckCUhpRSlGgVS69oFkdAwRk+052hZnV9lChoBmgJaA9DCG0Dd6BO/3FAlIaUUpRoFUujaBZHQMEZPxiPQv91fZQoaAZoCWgPQwhVwaikjpRxQJSGlFKUaBVLwGgWR0DBGUM3n6l+dX2UKGgGaAloD0MImaCGbyGbc0CUhpRSlGgVS5toFkdAwRlKQmu1W3V9lChoBmgJaA9DCENyMnGrAXNAlIaUUpRoFUugaBZHQMEZUp+tr9F1fZQoaAZoCWgPQwhB0xIrI2txQJSGlFKUaBVLnmgWR0DBGVMC/47BdX2UKGgGaAloD0MIQu4iTJFVckCUhpRSlGgVS51oFkdAwRldAlfJFXV9lChoBmgJaA9DCNKowMm2OnNAlIaUUpRoFUuhaBZHQMEZYUdilSF1fZQoaAZoCWgPQwhHrMWnwFNzQJSGlFKUaBVLq2gWR0DBGWSteUpvdX2UKGgGaAloD0MI4ugq3R2YcUCUhpRSlGgVS6RoFkdAwRlllTWGy3V9lChoBmgJaA9DCKgavRogHHRAlIaUUpRoFUvXaBZHQMEZdrrxAjZ1fZQoaAZoCWgPQwgUCaaaWd5zQJSGlFKUaBVLumgWR0DBGXdPLxI8dX2UKGgGaAloD0MIkgN2Nfn5ckCUhpRSlGgVS5hoFkdAwRmB5TqB3HV9lChoBmgJaA9DCKJD4EjgC3JAlIaUUpRoFUuXaBZHQMEZgcGC7K91fZQoaAZoCWgPQwiYTus2KDZvQJSGlFKUaBVLj2gWR0DBGY2bLEDRdX2UKGgGaAloD0MIeTwtPzAKckCUhpRSlGgVS59oFkdAwRmRz19ORHV9lChoBmgJaA9DCKqdYWpLK3NAlIaUUpRoFUuzaBZHQMEZlhN/OMV1fZQoaAZoCWgPQwhfXoB9NP9yQJSGlFKUaBVLfmgWR0DBGZfW6K+BdX2UKGgGaAloD0MItam6R3YFdECUhpRSlGgVS7FoFkdAwRmf1dPcjHV9lChoBmgJaA9DCHkhHR6CoHFAlIaUUpRoFUulaBZHQMEZpD7hvR91fZQoaAZoCWgPQwiqC3iZYdJwQJSGlFKUaBVLj2gWR0DBGaoEhaC+dX2UKGgGaAloD0MI0ZFc/oPlc0CUhpRSlGgVS6hoFkdAwRmt8DSw4nV9lChoBmgJaA9DCHhi1ovh33NAlIaUUpRoFUvDaBZHQMEZrTWwu/V1ZS4="
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 2490,
"n_steps": 2048,
"gamma": 0.99,
"gae_lambda": 0.95,
"ent_coef": 0.0,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 64,
"n_epochs": 10,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null
}