Transformers
PyTorch
Inference Endpoints
Francesco commited on
Commit
c948092
1 Parent(s): de0c4b0

commit files to HF hub

Browse files
Files changed (1) hide show
  1. README.md +1 -52
README.md CHANGED
@@ -1,52 +1 @@
1
- Implementation of ResNet proposed in [Deep Residual Learning for Image
2
- Recognition](https://arxiv.org/abs/1512.03385)
3
-
4
- ``` python
5
- ResNet.resnet18()
6
- ResNet.resnet26()
7
- ResNet.resnet34()
8
- ResNet.resnet50()
9
- ResNet.resnet101()
10
- ResNet.resnet152()
11
- ResNet.resnet200()
12
-
13
- Variants (d) proposed in `Bag of Tricks for Image Classification with Convolutional Neural Networks <https://arxiv.org/pdf/1812.01187.pdf`_
14
-
15
- ResNet.resnet26d()
16
- ResNet.resnet34d()
17
- ResNet.resnet50d()
18
- # You can construct your own one by chaning `stem` and `block`
19
- resnet101d = ResNet.resnet101(stem=ResNetStemC, block=partial(ResNetBottleneckBlock, shortcut=ResNetShorcutD))
20
- ```
21
-
22
- Examples:
23
-
24
- ``` python
25
- # change activation
26
- ResNet.resnet18(activation = nn.SELU)
27
- # change number of classes (default is 1000 )
28
- ResNet.resnet18(n_classes=100)
29
- # pass a different block
30
- ResNet.resnet18(block=SENetBasicBlock)
31
- # change the steam
32
- model = ResNet.resnet18(stem=ResNetStemC)
33
- change shortcut
34
- model = ResNet.resnet18(block=partial(ResNetBasicBlock, shortcut=ResNetShorcutD))
35
- # store each feature
36
- x = torch.rand((1, 3, 224, 224))
37
- # get features
38
- model = ResNet.resnet18()
39
- # first call .features, this will activate the forward hooks and tells the model you'll like to get the features
40
- model.encoder.features
41
- model(torch.randn((1,3,224,224)))
42
- # get the features from the encoder
43
- features = model.encoder.features
44
- print([x.shape for x in features])
45
- #[torch.Size([1, 64, 112, 112]), torch.Size([1, 64, 56, 56]), torch.Size([1, 128, 28, 28]), torch.Size([1, 256, 14, 14])]
46
- ```
47
-
48
- Args:
49
-
50
- : in\_channels (int, optional): Number of channels in the input
51
- Image (3 for RGB and 1 for Gray). Defaults to 3. n\_classes (int,
52
- optional): Number of classes. Defaults to 1000.
 
1
+ #ResNet