|
from langchain.text_splitter import CharacterTextSplitter |
|
from langchain.embeddings import HuggingFaceEmbeddings |
|
from langchain.vectorstores import Chroma |
|
from langchain import HuggingFacePipeline |
|
from langchain.chains import RetrievalQA |
|
from transformers import AutoTokenizer |
|
import pickle |
|
import os |
|
|
|
with open('shakespeare.pkl', 'rb') as fp: |
|
data = pickle.load(fp) |
|
|
|
bloomz_tokenizer = AutoTokenizer.from_pretrained('bigscience/bloomz-1b7') |
|
|
|
text_splitter = CharacterTextSplitter.from_huggingface_tokenizer(bloomz_tokenizer, chunk_size=100, chunk_overlap=0, separator='\n') |
|
|
|
documents = text_splitter.split_documents(data) |
|
|
|
embeddings = HuggingFaceEmbeddings() |
|
|
|
persist_directory = "vector_db" |
|
|
|
vectordb = Chroma.from_documents(documents=documents, embedding=embeddings, persist_directory=persist_directory) |
|
|
|
vectordb.persist() |
|
vectordb = None |
|
|
|
vectordb_persist = Chroma(persist_directory=persist_directory, embedding_function=embeddings) |
|
|
|
llm = HuggingFacePipeline.from_model_id( |
|
model_id="bigscience/bloomz-1b7", |
|
task="text-generation", |
|
model_kwargs={"temperature" : 0, "max_length" : 500}) |
|
|
|
doc_retriever = vectordb_persist.as_retriever() |
|
|
|
shakespeare_qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=doc_retriever) |
|
|
|
def make_inference(query): |
|
inference = shakespeare_qa.run(query) |
|
return inference |
|
|
|
if __name__ == "__main__": |
|
|
|
import gradio as gr |
|
|
|
gr.Interface( |
|
make_inference, |
|
gr.inputs.Textbox(lines=2, label="Query"), |
|
gr.outputs.Textbox(label="Response"), |
|
title="Ask_Shakespeare", |
|
description="️building_w_llms_qa_Shakespeare allows you to inquire about the Shakespeare's plays.", |
|
).launch() |