system HF staff commited on
Commit
3799eab
·
1 Parent(s): c2c3335

Commit From AutoTrain

Browse files
.gitattributes CHANGED
@@ -32,3 +32,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
36
+ *.tar.gz filter=lfs diff=lfs merge=lfs -text
37
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - autotrain
4
+ - text-classification
5
+ language:
6
+ - en
7
+ widget:
8
+ - text: "I love AutoTrain 🤗"
9
+ datasets:
10
+ - gjbooth2/autotrain-data-glenn_ntsa_1
11
+ co2_eq_emissions:
12
+ emissions: 7.937797482362119
13
+ ---
14
+
15
+ # Model Trained Using AutoTrain
16
+
17
+ - Problem type: Multi-class Classification
18
+ - Model ID: 3621496854
19
+ - CO2 Emissions (in grams): 7.9378
20
+
21
+ ## Validation Metrics
22
+
23
+ - Loss: 0.353
24
+ - Accuracy: 0.905
25
+ - Macro F1: 0.714
26
+ - Micro F1: 0.905
27
+ - Weighted F1: 0.890
28
+ - Macro Precision: 0.712
29
+ - Micro Precision: 0.905
30
+ - Weighted Precision: 0.887
31
+ - Macro Recall: 0.743
32
+ - Micro Recall: 0.905
33
+ - Weighted Recall: 0.905
34
+
35
+
36
+ ## Usage
37
+
38
+ You can use cURL to access this model:
39
+
40
+ ```
41
+ $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/gjbooth2/autotrain-glenn_ntsa_1-3621496854
42
+ ```
43
+
44
+ Or Python API:
45
+
46
+ ```
47
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer
48
+
49
+ model = AutoModelForSequenceClassification.from_pretrained("gjbooth2/autotrain-glenn_ntsa_1-3621496854", use_auth_token=True)
50
+
51
+ tokenizer = AutoTokenizer.from_pretrained("gjbooth2/autotrain-glenn_ntsa_1-3621496854", use_auth_token=True)
52
+
53
+ inputs = tokenizer("I love AutoTrain", return_tensors="pt")
54
+
55
+ outputs = model(**inputs)
56
+ ```
config.json ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "AutoTrain",
3
+ "_num_labels": 19,
4
+ "architectures": [
5
+ "BertForSequenceClassification"
6
+ ],
7
+ "attention_probs_dropout_prob": 0.1,
8
+ "classifier_dropout": null,
9
+ "directionality": "bidi",
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 1024,
14
+ "id2label": {
15
+ "0": "NTSA.1.1",
16
+ "1": "NTSA.1.2",
17
+ "2": "NTSA.10.1",
18
+ "3": "NTSA.10.2",
19
+ "4": "NTSA.11.1",
20
+ "5": "NTSA.11.2",
21
+ "6": "NTSA.11.3",
22
+ "7": "NTSA.11.4",
23
+ "8": "NTSA.11.5",
24
+ "9": "NTSA.13.1",
25
+ "10": "NTSA.2.1",
26
+ "11": "NTSA.3.1",
27
+ "12": "NTSA.4.1",
28
+ "13": "NTSA.5.1",
29
+ "14": "NTSA.6.1",
30
+ "15": "NTSA.6.2",
31
+ "16": "NTSA.7.1",
32
+ "17": "NTSA.8.1",
33
+ "18": "NTSA.9.1"
34
+ },
35
+ "initializer_range": 0.02,
36
+ "intermediate_size": 4096,
37
+ "label2id": {
38
+ "NTSA.1.1": 0,
39
+ "NTSA.1.2": 1,
40
+ "NTSA.10.1": 2,
41
+ "NTSA.10.2": 3,
42
+ "NTSA.11.1": 4,
43
+ "NTSA.11.2": 5,
44
+ "NTSA.11.3": 6,
45
+ "NTSA.11.4": 7,
46
+ "NTSA.11.5": 8,
47
+ "NTSA.13.1": 9,
48
+ "NTSA.2.1": 10,
49
+ "NTSA.3.1": 11,
50
+ "NTSA.4.1": 12,
51
+ "NTSA.5.1": 13,
52
+ "NTSA.6.1": 14,
53
+ "NTSA.6.2": 15,
54
+ "NTSA.7.1": 16,
55
+ "NTSA.8.1": 17,
56
+ "NTSA.9.1": 18
57
+ },
58
+ "layer_norm_eps": 1e-12,
59
+ "max_length": 384,
60
+ "max_position_embeddings": 512,
61
+ "model_type": "bert",
62
+ "num_attention_heads": 16,
63
+ "num_hidden_layers": 24,
64
+ "pad_token_id": 0,
65
+ "padding": "max_length",
66
+ "pooler_fc_size": 768,
67
+ "pooler_num_attention_heads": 12,
68
+ "pooler_num_fc_layers": 3,
69
+ "pooler_size_per_head": 128,
70
+ "pooler_type": "first_token_transform",
71
+ "position_embedding_type": "absolute",
72
+ "problem_type": "single_label_classification",
73
+ "torch_dtype": "float32",
74
+ "transformers_version": "4.25.1",
75
+ "type_vocab_size": 2,
76
+ "use_cache": true,
77
+ "vocab_size": 28996
78
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6fcde40015e2be8a0438593ada1688f05d5981f038a268f68873ec9d588116c3
3
+ size 1334533813
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:40792416d123f577211d602e16a5508920512272c13307c49b34e4795c007859
3
+ size 669188
tokenizer_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "do_lower_case": false,
4
+ "mask_token": "[MASK]",
5
+ "model_max_length": 512,
6
+ "name_or_path": "AutoTrain",
7
+ "pad_token": "[PAD]",
8
+ "sep_token": "[SEP]",
9
+ "special_tokens_map_file": null,
10
+ "strip_accents": null,
11
+ "tokenize_chinese_chars": true,
12
+ "tokenizer_class": "BertTokenizer",
13
+ "unk_token": "[UNK]"
14
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff