Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +10 -10
- a2c-PandaReachDense-v2/policy.optimizer.pth +1 -1
- a2c-PandaReachDense-v2/policy.pth +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -5.34 +/- 1.40
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:091a2adfe0997ec906bc505880af77e80e87f9804edbcadf0feafb28d2499343
|
3 |
+
size 108095
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -24,7 +24,7 @@
|
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
-
"start_time":
|
28 |
"learning_rate": 0.0007,
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
@@ -33,10 +33,10 @@
|
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
-
":serialized:": "
|
37 |
-
"achieved_goal": "[[ 0.
|
38 |
-
"desired_goal": "[[
|
39 |
-
"observation": "[[
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -44,9 +44,9 @@
|
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
48 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
-
"desired_goal": "[[-
|
50 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
@@ -56,7 +56,7 @@
|
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
@@ -64,8 +64,8 @@
|
|
64 |
},
|
65 |
"_n_updates": 100000,
|
66 |
"n_steps": 5,
|
67 |
-
"gamma": 0.
|
68 |
-
"gae_lambda":
|
69 |
"ent_coef": 0.0,
|
70 |
"vf_coef": 0.5,
|
71 |
"max_grad_norm": 0.5,
|
|
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
+
"start_time": 1681214710519539830,
|
28 |
"learning_rate": 0.0007,
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
|
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA9wirPjZ8lL3reiI/9wirPjZ8lL3reiI/9wirPjZ8lL3reiI/9wirPjZ8lL3reiI/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA1sxZPsYpxz8lk9o948ykvobdgT7XCnK9gm5/v3dS1z9gy8q/7h8hv/xsXb/Aqjy/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAD3CKs+NnyUvet6Ij8n6ds8UaiKux6iFz33CKs+NnyUvet6Ij8n6ds8UaiKux6iFz33CKs+NnyUvet6Ij8n6ds8UaiKux6iFz33CKs+NnyUvet6Ij8n6ds8UaiKux6iFz2UaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[ 0.33405277 -0.07250254 0.6346881 ]\n [ 0.33405277 -0.07250254 0.6346881 ]\n [ 0.33405277 -0.07250254 0.6346881 ]\n [ 0.33405277 -0.07250254 0.6346881 ]]",
|
38 |
+
"desired_goal": "[[ 0.21269545 1.5559623 0.10672597]\n [-0.32187566 0.2536432 -0.05909237]\n [-0.99777997 1.6822041 -1.5843315 ]\n [-0.62939346 -0.8649442 -0.73698044]]",
|
39 |
+
"observation": "[[ 0.33405277 -0.07250254 0.6346881 0.02684457 -0.00423149 0.03701984]\n [ 0.33405277 -0.07250254 0.6346881 0.02684457 -0.00423149 0.03701984]\n [ 0.33405277 -0.07250254 0.6346881 0.02684457 -0.00423149 0.03701984]\n [ 0.33405277 -0.07250254 0.6346881 0.02684457 -0.00423149 0.03701984]]"
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAcJ6svSHplThsi4o9I5gYPoGluz22uRw+F929vfwQ/T3L8Xk+nWGUPDlipz0k/Xk+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[-8.4286571e-02 7.1482973e-05 6.7648739e-02]\n [ 1.4901786e-01 9.1624267e-02 1.5305218e-01]\n [-9.2706852e-02 1.2356755e-01 2.4408643e-01]\n [ 1.8112952e-02 8.1730314e-02 2.4412972e-01]]",
|
50 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
|
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI2PSgoBTtEsCUhpRSlIwBbJRLMowBdJRHQLaFthz/6wd1fZQoaAZoCWgPQwhdbcX+ssscwJSGlFKUaBVLMmgWR0C2hYoSg5BDdX2UKGgGaAloD0MIPGwiMxeIFcCUhpRSlGgVSzJoFkdAtoVeW4Vh1HV9lChoBmgJaA9DCLiSHRuB+ATAlIaUUpRoFUsyaBZHQLaFNRjSXt11fZQoaAZoCWgPQwjNyCB3EQYQwJSGlFKUaBVLMmgWR0C2hij3h4t6dX2UKGgGaAloD0MIMqoM426wEsCUhpRSlGgVSzJoFkdAtoX81yeZonV9lChoBmgJaA9DCBKifEELmRjAlIaUUpRoFUsyaBZHQLaF0QOWjXZ1fZQoaAZoCWgPQwhLI2b2eewZwJSGlFKUaBVLMmgWR0C2hafOpsGgdX2UKGgGaAloD0MIaoe/Jmv0GsCUhpRSlGgVSzJoFkdAtoa+mj0tiHV9lChoBmgJaA9DCHxI+N7fwBHAlIaUUpRoFUsyaBZHQLaGkrsSkCV1fZQoaAZoCWgPQwgfhlYnZ8gUwJSGlFKUaBVLMmgWR0C2hmcy8BdVdX2UKGgGaAloD0MI7PtwkBDFGcCUhpRSlGgVSzJoFkdAtoY+HN5dGHV9lChoBmgJaA9DCIdSexFtFxbAlIaUUpRoFUsyaBZHQLaHbJd0JWx1fZQoaAZoCWgPQwhRweEFEQkSwJSGlFKUaBVLMmgWR0C2h0C/oJRgdX2UKGgGaAloD0MIvAhTlEuzHMCUhpRSlGgVSzJoFkdAtocVMwlByHV9lChoBmgJaA9DCA3fwrrxfhnAlIaUUpRoFUsyaBZHQLaG7DbrTph1fZQoaAZoCWgPQwiw4lRrYQYSwJSGlFKUaBVLMmgWR0C2iByCBf8edX2UKGgGaAloD0MI6+bib3vCHsCUhpRSlGgVSzJoFkdAtofwleF+NXV9lChoBmgJaA9DCINStHIvgBPAlIaUUpRoFUsyaBZHQLaHxQizLOl1fZQoaAZoCWgPQwg4SfPHtC4gwJSGlFKUaBVLMmgWR0C2h5vxDst1dX2UKGgGaAloD0MI+7FJfsQfE8CUhpRSlGgVSzJoFkdAtojSXZ5AyHV9lChoBmgJaA9DCCJRaFn3DyDAlIaUUpRoFUsyaBZHQLaIpqLS/j91fZQoaAZoCWgPQwgW3XpND6oQwJSGlFKUaBVLMmgWR0C2iHsWj45+dX2UKGgGaAloD0MIUoAomDEFFMCUhpRSlGgVSzJoFkdAtohSSbH6uXV9lChoBmgJaA9DCE1lUdhFkRrAlIaUUpRoFUsyaBZHQLaJjU7jkuJ1fZQoaAZoCWgPQwhy4NVyZ2YGwJSGlFKUaBVLMmgWR0C2iWF4Pf8/dX2UKGgGaAloD0MInb6er1l+FMCUhpRSlGgVSzJoFkdAtok16/qPfnV9lChoBmgJaA9DCLg6AOKu3hbAlIaUUpRoFUsyaBZHQLaJDNRFZxJ1fZQoaAZoCWgPQwiKyLCKN+oiwJSGlFKUaBVLMmgWR0C2ikKgM+eOdX2UKGgGaAloD0MIVvFG5pE/GMCUhpRSlGgVSzJoFkdAtooWzjWCmXV9lChoBmgJaA9DCGtgqwSLwxTAlIaUUpRoFUsyaBZHQLaJ60iyIHl1fZQoaAZoCWgPQwgSwTi4dKwNwJSGlFKUaBVLMmgWR0C2icIwmE5AdX2UKGgGaAloD0MIxa7t7ZYEDMCUhpRSlGgVSzJoFkdAtor4Elme2HV9lChoBmgJaA9DCDMZjuczYBDAlIaUUpRoFUsyaBZHQLaKzDoyKvV1fZQoaAZoCWgPQwiDGVOwxnEgwJSGlFKUaBVLMmgWR0C2iqCfUWl/dX2UKGgGaAloD0MI3Qn2X+dWFMCUhpRSlGgVSzJoFkdAtop3nDBMz3V9lChoBmgJaA9DCElHOZhNgBTAlIaUUpRoFUsyaBZHQLaLh+mFajh1fZQoaAZoCWgPQwhKJxJMNQMVwJSGlFKUaBVLMmgWR0C2i1u/gzgudX2UKGgGaAloD0MIbEHvjSHQEcCUhpRSlGgVSzJoFkdAtosv2ugYg3V9lChoBmgJaA9DCJ0std5vRBjAlIaUUpRoFUsyaBZHQLaLBnjyWiV1fZQoaAZoCWgPQwgLmpZYGW0MwJSGlFKUaBVLMmgWR0C2i/fwAlv7dX2UKGgGaAloD0MIqAGDpE/rDMCUhpRSlGgVSzJoFkdAtovL4M4LkXV9lChoBmgJaA9DCBJosKnz6AjAlIaUUpRoFUsyaBZHQLaLoAO8TSN1fZQoaAZoCWgPQwhCW86luGoFwJSGlFKUaBVLMmgWR0C2i3asIVuadX2UKGgGaAloD0MI2A5G7BNgIMCUhpRSlGgVSzJoFkdAtoxpvLowEnV9lChoBmgJaA9DCIy8rIkFThTAlIaUUpRoFUsyaBZHQLaMPZIg/1R1fZQoaAZoCWgPQwhXsI14stsTwJSGlFKUaBVLMmgWR0C2jBG2PT5PdX2UKGgGaAloD0MIHv6arFFfIcCUhpRSlGgVSzJoFkdAtovocU/OdHV9lChoBmgJaA9DCIUoX9BCQh3AlIaUUpRoFUsyaBZHQLaM2bdJrcl1fZQoaAZoCWgPQwjWU6uvrjIkwJSGlFKUaBVLMmgWR0C2jK2Ts6aLdX2UKGgGaAloD0MIV5boLLN4FMCUhpRSlGgVSzJoFkdAtoyBw0fozXV9lChoBmgJaA9DCI9WtaSjbBbAlIaUUpRoFUsyaBZHQLaMWHnlnyx1fZQoaAZoCWgPQwhE3JxKBiAYwJSGlFKUaBVLMmgWR0C2jUYPwuuidX2UKGgGaAloD0MIeeV620z1GsCUhpRSlGgVSzJoFkdAto0aBe5WinV9lChoBmgJaA9DCEELCRhdTiHAlIaUUpRoFUsyaBZHQLaM7igkC3h1fZQoaAZoCWgPQwhXfEPhszUhwJSGlFKUaBVLMmgWR0C2jMTK1XvIdX2UKGgGaAloD0MIbHh6pSyzHcCUhpRSlGgVSzJoFkdAto21ejVQRHV9lChoBmgJaA9DCAq5Us+CACTAlIaUUpRoFUsyaBZHQLaNiWJJoTR1fZQoaAZoCWgPQwiFtTF2wpsawJSGlFKUaBVLMmgWR0C2jV18LKFJdX2UKGgGaAloD0MIgxlTsMZZHcCUhpRSlGgVSzJoFkdAto00HRkVe3V9lChoBmgJaA9DCHtMpDSbzyHAlIaUUpRoFUsyaBZHQLaOKdvsJIF1fZQoaAZoCWgPQwi+LsN/utEWwJSGlFKUaBVLMmgWR0C2jf3gDRtxdX2UKGgGaAloD0MIQQ+1bRj1GMCUhpRSlGgVSzJoFkdAto3SISDh+HV9lChoBmgJaA9DCAytTs5QnAjAlIaUUpRoFUsyaBZHQLaNqNDtw711fZQoaAZoCWgPQwiA8Qwa+icXwJSGlFKUaBVLMmgWR0C2jplPBSDRdX2UKGgGaAloD0MIKZZbWg3JIMCUhpRSlGgVSzJoFkdAto5tMg2ZRnV9lChoBmgJaA9DCO1+FeC7zRPAlIaUUpRoFUsyaBZHQLaOQV9F4LV1fZQoaAZoCWgPQwiEgefew6UYwJSGlFKUaBVLMmgWR0C2jhgAQxvfdX2UKGgGaAloD0MI0VynkZb6IcCUhpRSlGgVSzJoFkdAto8XfNzKcXV9lChoBmgJaA9DCI/f2/Rn/w3AlIaUUpRoFUsyaBZHQLaO61stTUB1fZQoaAZoCWgPQwiokCv1LHgVwJSGlFKUaBVLMmgWR0C2jr+C04R3dX2UKGgGaAloD0MIP+YDAp0JF8CUhpRSlGgVSzJoFkdAto6WVUuL8HV9lChoBmgJaA9DCPkQVI1ezRfAlIaUUpRoFUsyaBZHQLaPiWAf+0h1fZQoaAZoCWgPQwhNTBdi9ZcgwJSGlFKUaBVLMmgWR0C2j10xM36zdX2UKGgGaAloD0MIxanWwiw0H8CUhpRSlGgVSzJoFkdAto8xS5y2hXV9lChoBmgJaA9DCJ2FPe3wxxXAlIaUUpRoFUsyaBZHQLaPB+wkgOl1fZQoaAZoCWgPQwioGyjwTj4JwJSGlFKUaBVLMmgWR0C2kAA8fV7QdX2UKGgGaAloD0MIN4lBYOWAJ8CUhpRSlGgVSzJoFkdAto/UGiYb83V9lChoBmgJaA9DCFt4Xio2JhjAlIaUUpRoFUsyaBZHQLaPqDjR2KV1fZQoaAZoCWgPQwgQCHQmbdoXwJSGlFKUaBVLMmgWR0C2j37lNlAedX2UKGgGaAloD0MIezApPj4RFsCUhpRSlGgVSzJoFkdAtpBvQOWjXXV9lChoBmgJaA9DCM0f09o0xhPAlIaUUpRoFUsyaBZHQLaQQx5LRKJ1fZQoaAZoCWgPQwgzN9+I7pkQwJSGlFKUaBVLMmgWR0C2kBdIwudxdX2UKGgGaAloD0MIIorJG2AWEsCUhpRSlGgVSzJoFkdAto/t9w3o93V9lChoBmgJaA9DCKt14nK8CifAlIaUUpRoFUsyaBZHQLaQ4oBJZnt1fZQoaAZoCWgPQwi2oPfGEBATwJSGlFKUaBVLMmgWR0C2kLZlrdnCdX2UKGgGaAloD0MIVmKelbTSEMCUhpRSlGgVSzJoFkdAtpCKkbgjyHV9lChoBmgJaA9DCGQfZFkwCSTAlIaUUpRoFUsyaBZHQLaQYUBGQS11fZQoaAZoCWgPQwi0O6QYIIEQwJSGlFKUaBVLMmgWR0C2kU8f3evZdX2UKGgGaAloD0MIjV2iemtQG8CUhpRSlGgVSzJoFkdAtpEi9h7VrnV9lChoBmgJaA9DCFcJFoczHxfAlIaUUpRoFUsyaBZHQLaQ9xmTTv11fZQoaAZoCWgPQwh5eTpXlOIZwJSGlFKUaBVLMmgWR0C2kM3mzSkTdX2UKGgGaAloD0MIvcYuUb3lFMCUhpRSlGgVSzJoFkdAtpG9senyeHV9lChoBmgJaA9DCGu5MxMMPyLAlIaUUpRoFUsyaBZHQLaRkZYxL011fZQoaAZoCWgPQwjM7snDQlUkwJSGlFKUaBVLMmgWR0C2kWW/rSmZdX2UKGgGaAloD0MI+fTYlgE3EsCUhpRSlGgVSzJoFkdAtpE8a86FNHV9lChoBmgJaA9DCIwrLo7KjQfAlIaUUpRoFUsyaBZHQLaSLP/aQFN1fZQoaAZoCWgPQwiSPq2iP5QNwJSGlFKUaBVLMmgWR0C2kgDa4+bFdX2UKGgGaAloD0MI0Vs8vOcIIsCUhpRSlGgVSzJoFkdAtpHVA/s3Q3V9lChoBmgJaA9DCOhn6nWLABvAlIaUUpRoFUsyaBZHQLaRq6nzg/F1ZS4="
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
|
|
64 |
},
|
65 |
"_n_updates": 100000,
|
66 |
"n_steps": 5,
|
67 |
+
"gamma": 0.9,
|
68 |
+
"gae_lambda": 0.98,
|
69 |
"ent_coef": 0.0,
|
70 |
"vf_coef": 0.5,
|
71 |
"max_grad_norm": 0.5,
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 44734
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9f04181fa2d312b5308b2905ca0a2078ee9bd142598c238222ed47e95dc6ed86
|
3 |
size 44734
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 46014
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d852562a8eb9345ba9ee61f9eb3faade7c93ea76cf91b53eb773810d8a6bb552
|
3 |
size 46014
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7facf0f77430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7facf0f759c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681208354150783696, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAilnePiMCMb2U7gk/ilnePiMCMb2U7gk/ilnePiMCMb2U7gk/ilnePiMCMb2U7gk/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA13iJv3oRdj9K9hs/HAHAPxjIlT8KJXS+ifCVv8CfET/Kh8+/UW2Tvw1Y3T40Pq2/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACKWd4+IwIxvZTuCT/Aig88jv2SOR3PiDyKWd4+IwIxvZTuCT/Aig88jv2SOR3PiDyKWd4+IwIxvZTuCT/Aig88jv2SOR3PiDyKWd4+IwIxvZTuCT/Aig88jv2SOR3PiDyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.43427688 -0.04321493 0.53879666]\n [ 0.43427688 -0.04321493 0.53879666]\n [ 0.43427688 -0.04321493 0.53879666]\n [ 0.43427688 -0.04321493 0.53879666]]", "desired_goal": "[[-1.0740002 0.9612042 0.6092268 ]\n [ 1.5000339 1.1701689 -0.23842254]\n [-1.171403 0.56884384 -1.6213315 ]\n [-1.1517736 0.4323124 -1.3534608 ]]", "observation": "[[ 4.3427688e-01 -4.3214928e-02 5.3879666e-01 8.7611079e-03\n 2.8036203e-04 1.6700322e-02]\n [ 4.3427688e-01 -4.3214928e-02 5.3879666e-01 8.7611079e-03\n 2.8036203e-04 1.6700322e-02]\n [ 4.3427688e-01 -4.3214928e-02 5.3879666e-01 8.7611079e-03\n 2.8036203e-04 1.6700322e-02]\n [ 4.3427688e-01 -4.3214928e-02 5.3879666e-01 8.7611079e-03\n 2.8036203e-04 1.6700322e-02]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAWeUJvjWxgb01FjE+pafRPUGIfz3oYYg+Aj6qPWD6Dj7KEMs9YuuAvT+qDL6Kaw4+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.13466395 -0.06332628 0.17293628]\n [ 0.10237054 0.0623858 0.26637197]\n [ 0.08312608 0.13962698 0.09915312]\n [-0.06294896 -0.13736819 0.1390821 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMInIcTmE4LD8CUhpRSlIwBbJRLMowBdJRHQLal/nyd4FB1fZQoaAZoCWgPQwjp0yr6QxMRwJSGlFKUaBVLMmgWR0C2peD5wfhddX2UKGgGaAloD0MIS3UBLzOcH8CUhpRSlGgVSzJoFkdAtqXDLV4HHHV9lChoBmgJaA9DCLezrzxInxDAlIaUUpRoFUsyaBZHQLalomjCYTl1fZQoaAZoCWgPQwgYeO49XGoiwJSGlFKUaBVLMmgWR0C2psxgZ0jkdX2UKGgGaAloD0MIUHEceLVMFcCUhpRSlGgVSzJoFkdAtqauXRgJC3V9lChoBmgJaA9DCG1y+KQTWRLAlIaUUpRoFUsyaBZHQLamkEXLvCx1fZQoaAZoCWgPQwijOh3IehoTwJSGlFKUaBVLMmgWR0C2pm9zOopAdX2UKGgGaAloD0MIyJbl6zIsGsCUhpRSlGgVSzJoFkdAtqecaKk2xnV9lChoBmgJaA9DCEnYt5OIyCHAlIaUUpRoFUsyaBZHQLanfpztCzF1fZQoaAZoCWgPQwjHKqVnejkewJSGlFKUaBVLMmgWR0C2p2EwztTldX2UKGgGaAloD0MIzy7f+rBuIMCUhpRSlGgVSzJoFkdAtqdAO8TSLXV9lChoBmgJaA9DCNz0Zz9ShBLAlIaUUpRoFUsyaBZHQLaodOG0u151fZQoaAZoCWgPQwirPldbsV8WwJSGlFKUaBVLMmgWR0C2qFb5qM3qdX2UKGgGaAloD0MIQuxMofPyJMCUhpRSlGgVSzJoFkdAtqg5Gc4HX3V9lChoBmgJaA9DCNPYXgt6nxPAlIaUUpRoFUsyaBZHQLaoGGLDQ7d1fZQoaAZoCWgPQwjfN772zIIdwJSGlFKUaBVLMmgWR0C2qUaaLGaQdX2UKGgGaAloD0MIMH+FzJUBGsCUhpRSlGgVSzJoFkdAtqkosDnvD3V9lChoBmgJaA9DCOpZEMr7GB7AlIaUUpRoFUsyaBZHQLapCqc3EQ51fZQoaAZoCWgPQwgzG2SSkWMlwJSGlFKUaBVLMmgWR0C2qOnSro4ddX2UKGgGaAloD0MIqG3DKAjWIcCUhpRSlGgVSzJoFkdAtqoaDbrTpnV9lChoBmgJaA9DCO0NvjCZgiPAlIaUUpRoFUsyaBZHQLap/Idlum91fZQoaAZoCWgPQwj9EYYBSy4TwJSGlFKUaBVLMmgWR0C2qd6TbFjvdX2UKGgGaAloD0MIGD+Ne/PbGcCUhpRSlGgVSzJoFkdAtqm9mkFfRnV9lChoBmgJaA9DCJPlJJS+cB/AlIaUUpRoFUsyaBZHQLaqssAvL5h1fZQoaAZoCWgPQwgRHm0csTYUwJSGlFKUaBVLMmgWR0C2qpTAzpHJdX2UKGgGaAloD0MINzP60XCKHMCUhpRSlGgVSzJoFkdAtqp2pm29c3V9lChoBmgJaA9DCC/APjp1BSDAlIaUUpRoFUsyaBZHQLaqVYc/+sJ1fZQoaAZoCWgPQwjNI38w8FwSwJSGlFKUaBVLMmgWR0C2qy/y5I6KdX2UKGgGaAloD0MI/OB86lgVFcCUhpRSlGgVSzJoFkdAtqsRyJbdJ3V9lChoBmgJaA9DCMUe2scKRiLAlIaUUpRoFUsyaBZHQLaq83evZAZ1fZQoaAZoCWgPQwhhNgGG5V8ZwJSGlFKUaBVLMmgWR0C2qtIOtnwodX2UKGgGaAloD0MIYaQXtftVHMCUhpRSlGgVSzJoFkdAtqui+fywwHV9lChoBmgJaA9DCP1pozod6B/AlIaUUpRoFUsyaBZHQLarhMH8jzJ1fZQoaAZoCWgPQwjP91PjpasbwJSGlFKUaBVLMmgWR0C2q2aBun/DdX2UKGgGaAloD0MIsKnzqPgPG8CUhpRSlGgVSzJoFkdAtqtFKYiPhnV9lChoBmgJaA9DCFg33h0Zux7AlIaUUpRoFUsyaBZHQLasKVAiV0N1fZQoaAZoCWgPQwgtQNtq1pkVwJSGlFKUaBVLMmgWR0C2rAsZLqUvdX2UKGgGaAloD0MIlDDT9q+sEcCUhpRSlGgVSzJoFkdAtqvtDb8FZHV9lChoBmgJaA9DCMtpT8k5KSDAlIaUUpRoFUsyaBZHQLary65oXbd1fZQoaAZoCWgPQwj2XnzRHo8TwJSGlFKUaBVLMmgWR0C2rKHF5v9+dX2UKGgGaAloD0MI2ZdsPNgCH8CUhpRSlGgVSzJoFkdAtqyDlr/KhnV9lChoBmgJaA9DCBOAf0qVcCTAlIaUUpRoFUsyaBZHQLasZUrkKeF1fZQoaAZoCWgPQwg91LZhFPQawJSGlFKUaBVLMmgWR0C2rEPszEaVdX2UKGgGaAloD0MIoib6fJQ5IsCUhpRSlGgVSzJoFkdAtq0gW+GoJnV9lChoBmgJaA9DCElMUMO30B/AlIaUUpRoFUsyaBZHQLatAsUqQRx1fZQoaAZoCWgPQwikxRnDnCAVwJSGlFKUaBVLMmgWR0C2rOSZjQRgdX2UKGgGaAloD0MIg94bQwCAEsCUhpRSlGgVSzJoFkdAtqzDOB19v3V9lChoBmgJaA9DCH0geedQlh3AlIaUUpRoFUsyaBZHQLatnRpDeCV1fZQoaAZoCWgPQwgt6SgHs0kgwJSGlFKUaBVLMmgWR0C2rX7rkbPydX2UKGgGaAloD0MI3sZmR6q/GsCUhpRSlGgVSzJoFkdAtq1glIEr5XV9lChoBmgJaA9DCLsru2BwpSLAlIaUUpRoFUsyaBZHQLatPzxPO6d1fZQoaAZoCWgPQwj5odKImY0bwJSGlFKUaBVLMmgWR0C2rhMTFl06dX2UKGgGaAloD0MIdVd2weBKIMCUhpRSlGgVSzJoFkdAtq309lmOEXV9lChoBmgJaA9DCA3H8xlQ1yHAlIaUUpRoFUsyaBZHQLat1uKoAGV1fZQoaAZoCWgPQwgnSkIibQMcwJSGlFKUaBVLMmgWR0C2rbV5a/yodX2UKGgGaAloD0MIIHpSJjX0G8CUhpRSlGgVSzJoFkdAtq6To9s7+3V9lChoBmgJaA9DCLNAu0OKAR3AlIaUUpRoFUsyaBZHQLaudYhMajx1fZQoaAZoCWgPQwirP8IwYGkSwJSGlFKUaBVLMmgWR0C2rldpItlJdX2UKGgGaAloD0MI0IB6M2reG8CUhpRSlGgVSzJoFkdAtq42CaqjrXV9lChoBmgJaA9DCFX5npEI/RPAlIaUUpRoFUsyaBZHQLavH8AJb+t1fZQoaAZoCWgPQwgnZyjueBMZwJSGlFKUaBVLMmgWR0C2rwG8AaNudX2UKGgGaAloD0MIBK+WOzMBIsCUhpRSlGgVSzJoFkdAtq7kLjPv8nV9lChoBmgJaA9DCLxASYEFoBvAlIaUUpRoFUsyaBZHQLauwvJA+px1fZQoaAZoCWgPQwjO+pRjstgewJSGlFKUaBVLMmgWR0C2r7C+QEIPdX2UKGgGaAloD0MIEwoRcAjFEcCUhpRSlGgVSzJoFkdAtq+S3DvVmXV9lChoBmgJaA9DCLRyLzArhBbAlIaUUpRoFUsyaBZHQLavdLaVUuN1fZQoaAZoCWgPQwhMM93rpG4jwJSGlFKUaBVLMmgWR0C2r1NqgyuZdX2UKGgGaAloD0MIP47myMqPHcCUhpRSlGgVSzJoFkdAtrAzPzFuN3V9lChoBmgJaA9DCMCTFi6rIBvAlIaUUpRoFUsyaBZHQLawFQrc0tR1fZQoaAZoCWgPQwjTZwdcV5wfwJSGlFKUaBVLMmgWR0C2r/bAP/aQdX2UKGgGaAloD0MITTCca5jhF8CUhpRSlGgVSzJoFkdAtq/V4VymynV9lChoBmgJaA9DCKWFyypsthfAlIaUUpRoFUsyaBZHQLawuiR4hU11fZQoaAZoCWgPQwh5JF6ezhUZwJSGlFKUaBVLMmgWR0C2sJwQ+UyIdX2UKGgGaAloD0MISQ9Dq5OjF8CUhpRSlGgVSzJoFkdAtrB9s67ulXV9lChoBmgJaA9DCBKkUuxoHBvAlIaUUpRoFUsyaBZHQLawXE9Mbm51fZQoaAZoCWgPQwjc8Lvplr0cwJSGlFKUaBVLMmgWR0C2sTcI/qxDdX2UKGgGaAloD0MIdArys5FrEMCUhpRSlGgVSzJoFkdAtrEZCzC1qnV9lChoBmgJaA9DCPAyw0ZZjxTAlIaUUpRoFUsyaBZHQLaw+senyd51fZQoaAZoCWgPQwgtXcE24rkfwJSGlFKUaBVLMmgWR0C2sNllXiiqdX2UKGgGaAloD0MIrHE2HQFMGcCUhpRSlGgVSzJoFkdAtrG4N6PbPHV9lChoBmgJaA9DCIZVvJF5NBzAlIaUUpRoFUsyaBZHQLaxmh86V+t1fZQoaAZoCWgPQwjbbRea61QgwJSGlFKUaBVLMmgWR0C2sXvE4vOAdX2UKGgGaAloD0MI9dkB1xUDEMCUhpRSlGgVSzJoFkdAtrFaoxYaHnV9lChoBmgJaA9DCKZ7ndSXFR/AlIaUUpRoFUsyaBZHQLayRV/tpmF1fZQoaAZoCWgPQwj92CQ/4qcXwJSGlFKUaBVLMmgWR0C2sico6S1WdX2UKGgGaAloD0MIdVq3Qe03EcCUhpRSlGgVSzJoFkdAtrII81XNknV9lChoBmgJaA9DCKBSJcreMg/AlIaUUpRoFUsyaBZHQLax58Yht+F1fZQoaAZoCWgPQwgSMpBnl28gwJSGlFKUaBVLMmgWR0C2ssVEZzgddX2UKGgGaAloD0MIRmCsb2DSEsCUhpRSlGgVSzJoFkdAtrKnEJjUeHV9lChoBmgJaA9DCI5XIHpS1h/AlIaUUpRoFUsyaBZHQLayiLCemN11fZQoaAZoCWgPQwhY5ULlX4MgwJSGlFKUaBVLMmgWR0C2smexjawmdX2UKGgGaAloD0MI3dCUnX7AIMCUhpRSlGgVSzJoFkdAtrNKfnOjZnV9lChoBmgJaA9DCObOTDCc2xTAlIaUUpRoFUsyaBZHQLazLIbwSap1fZQoaAZoCWgPQwjpSZnU0DYfwJSGlFKUaBVLMmgWR0C2sw4uoP07dX2UKGgGaAloD0MI5V5gViiyFsCUhpRSlGgVSzJoFkdAtrLs7Njbz3V9lChoBmgJaA9DCJFgqpm1BBHAlIaUUpRoFUsyaBZHQLaz4oKlYU51fZQoaAZoCWgPQwjWqfI9I+ESwJSGlFKUaBVLMmgWR0C2s8TrE9+xdX2UKGgGaAloD0MIsTbGTng5HMCUhpRSlGgVSzJoFkdAtrOmrT6SDHV9lChoBmgJaA9DCPNYMzLIjRrAlIaUUpRoFUsyaBZHQLazhUL2HtZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 100000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7facf0f77430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7facf0f759c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681214710519539830, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA9wirPjZ8lL3reiI/9wirPjZ8lL3reiI/9wirPjZ8lL3reiI/9wirPjZ8lL3reiI/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA1sxZPsYpxz8lk9o948ykvobdgT7XCnK9gm5/v3dS1z9gy8q/7h8hv/xsXb/Aqjy/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAD3CKs+NnyUvet6Ij8n6ds8UaiKux6iFz33CKs+NnyUvet6Ij8n6ds8UaiKux6iFz33CKs+NnyUvet6Ij8n6ds8UaiKux6iFz33CKs+NnyUvet6Ij8n6ds8UaiKux6iFz2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.33405277 -0.07250254 0.6346881 ]\n [ 0.33405277 -0.07250254 0.6346881 ]\n [ 0.33405277 -0.07250254 0.6346881 ]\n [ 0.33405277 -0.07250254 0.6346881 ]]", "desired_goal": "[[ 0.21269545 1.5559623 0.10672597]\n [-0.32187566 0.2536432 -0.05909237]\n [-0.99777997 1.6822041 -1.5843315 ]\n [-0.62939346 -0.8649442 -0.73698044]]", "observation": "[[ 0.33405277 -0.07250254 0.6346881 0.02684457 -0.00423149 0.03701984]\n [ 0.33405277 -0.07250254 0.6346881 0.02684457 -0.00423149 0.03701984]\n [ 0.33405277 -0.07250254 0.6346881 0.02684457 -0.00423149 0.03701984]\n [ 0.33405277 -0.07250254 0.6346881 0.02684457 -0.00423149 0.03701984]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAcJ6svSHplThsi4o9I5gYPoGluz22uRw+F929vfwQ/T3L8Xk+nWGUPDlipz0k/Xk+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-8.4286571e-02 7.1482973e-05 6.7648739e-02]\n [ 1.4901786e-01 9.1624267e-02 1.5305218e-01]\n [-9.2706852e-02 1.2356755e-01 2.4408643e-01]\n [ 1.8112952e-02 8.1730314e-02 2.4412972e-01]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI2PSgoBTtEsCUhpRSlIwBbJRLMowBdJRHQLaFthz/6wd1fZQoaAZoCWgPQwhdbcX+ssscwJSGlFKUaBVLMmgWR0C2hYoSg5BDdX2UKGgGaAloD0MIPGwiMxeIFcCUhpRSlGgVSzJoFkdAtoVeW4Vh1HV9lChoBmgJaA9DCLiSHRuB+ATAlIaUUpRoFUsyaBZHQLaFNRjSXt11fZQoaAZoCWgPQwjNyCB3EQYQwJSGlFKUaBVLMmgWR0C2hij3h4t6dX2UKGgGaAloD0MIMqoM426wEsCUhpRSlGgVSzJoFkdAtoX81yeZonV9lChoBmgJaA9DCBKifEELmRjAlIaUUpRoFUsyaBZHQLaF0QOWjXZ1fZQoaAZoCWgPQwhLI2b2eewZwJSGlFKUaBVLMmgWR0C2hafOpsGgdX2UKGgGaAloD0MIaoe/Jmv0GsCUhpRSlGgVSzJoFkdAtoa+mj0tiHV9lChoBmgJaA9DCHxI+N7fwBHAlIaUUpRoFUsyaBZHQLaGkrsSkCV1fZQoaAZoCWgPQwgfhlYnZ8gUwJSGlFKUaBVLMmgWR0C2hmcy8BdVdX2UKGgGaAloD0MI7PtwkBDFGcCUhpRSlGgVSzJoFkdAtoY+HN5dGHV9lChoBmgJaA9DCIdSexFtFxbAlIaUUpRoFUsyaBZHQLaHbJd0JWx1fZQoaAZoCWgPQwhRweEFEQkSwJSGlFKUaBVLMmgWR0C2h0C/oJRgdX2UKGgGaAloD0MIvAhTlEuzHMCUhpRSlGgVSzJoFkdAtocVMwlByHV9lChoBmgJaA9DCA3fwrrxfhnAlIaUUpRoFUsyaBZHQLaG7DbrTph1fZQoaAZoCWgPQwiw4lRrYQYSwJSGlFKUaBVLMmgWR0C2iByCBf8edX2UKGgGaAloD0MI6+bib3vCHsCUhpRSlGgVSzJoFkdAtofwleF+NXV9lChoBmgJaA9DCINStHIvgBPAlIaUUpRoFUsyaBZHQLaHxQizLOl1fZQoaAZoCWgPQwg4SfPHtC4gwJSGlFKUaBVLMmgWR0C2h5vxDst1dX2UKGgGaAloD0MI+7FJfsQfE8CUhpRSlGgVSzJoFkdAtojSXZ5AyHV9lChoBmgJaA9DCCJRaFn3DyDAlIaUUpRoFUsyaBZHQLaIpqLS/j91fZQoaAZoCWgPQwgW3XpND6oQwJSGlFKUaBVLMmgWR0C2iHsWj45+dX2UKGgGaAloD0MIUoAomDEFFMCUhpRSlGgVSzJoFkdAtohSSbH6uXV9lChoBmgJaA9DCE1lUdhFkRrAlIaUUpRoFUsyaBZHQLaJjU7jkuJ1fZQoaAZoCWgPQwhy4NVyZ2YGwJSGlFKUaBVLMmgWR0C2iWF4Pf8/dX2UKGgGaAloD0MInb6er1l+FMCUhpRSlGgVSzJoFkdAtok16/qPfnV9lChoBmgJaA9DCLg6AOKu3hbAlIaUUpRoFUsyaBZHQLaJDNRFZxJ1fZQoaAZoCWgPQwiKyLCKN+oiwJSGlFKUaBVLMmgWR0C2ikKgM+eOdX2UKGgGaAloD0MIVvFG5pE/GMCUhpRSlGgVSzJoFkdAtooWzjWCmXV9lChoBmgJaA9DCGtgqwSLwxTAlIaUUpRoFUsyaBZHQLaJ60iyIHl1fZQoaAZoCWgPQwgSwTi4dKwNwJSGlFKUaBVLMmgWR0C2icIwmE5AdX2UKGgGaAloD0MIxa7t7ZYEDMCUhpRSlGgVSzJoFkdAtor4Elme2HV9lChoBmgJaA9DCDMZjuczYBDAlIaUUpRoFUsyaBZHQLaKzDoyKvV1fZQoaAZoCWgPQwiDGVOwxnEgwJSGlFKUaBVLMmgWR0C2iqCfUWl/dX2UKGgGaAloD0MI3Qn2X+dWFMCUhpRSlGgVSzJoFkdAtop3nDBMz3V9lChoBmgJaA9DCElHOZhNgBTAlIaUUpRoFUsyaBZHQLaLh+mFajh1fZQoaAZoCWgPQwhKJxJMNQMVwJSGlFKUaBVLMmgWR0C2i1u/gzgudX2UKGgGaAloD0MIbEHvjSHQEcCUhpRSlGgVSzJoFkdAtosv2ugYg3V9lChoBmgJaA9DCJ0std5vRBjAlIaUUpRoFUsyaBZHQLaLBnjyWiV1fZQoaAZoCWgPQwgLmpZYGW0MwJSGlFKUaBVLMmgWR0C2i/fwAlv7dX2UKGgGaAloD0MIqAGDpE/rDMCUhpRSlGgVSzJoFkdAtovL4M4LkXV9lChoBmgJaA9DCBJosKnz6AjAlIaUUpRoFUsyaBZHQLaLoAO8TSN1fZQoaAZoCWgPQwhCW86luGoFwJSGlFKUaBVLMmgWR0C2i3asIVuadX2UKGgGaAloD0MI2A5G7BNgIMCUhpRSlGgVSzJoFkdAtoxpvLowEnV9lChoBmgJaA9DCIy8rIkFThTAlIaUUpRoFUsyaBZHQLaMPZIg/1R1fZQoaAZoCWgPQwhXsI14stsTwJSGlFKUaBVLMmgWR0C2jBG2PT5PdX2UKGgGaAloD0MIHv6arFFfIcCUhpRSlGgVSzJoFkdAtovocU/OdHV9lChoBmgJaA9DCIUoX9BCQh3AlIaUUpRoFUsyaBZHQLaM2bdJrcl1fZQoaAZoCWgPQwjWU6uvrjIkwJSGlFKUaBVLMmgWR0C2jK2Ts6aLdX2UKGgGaAloD0MIV5boLLN4FMCUhpRSlGgVSzJoFkdAtoyBw0fozXV9lChoBmgJaA9DCI9WtaSjbBbAlIaUUpRoFUsyaBZHQLaMWHnlnyx1fZQoaAZoCWgPQwhE3JxKBiAYwJSGlFKUaBVLMmgWR0C2jUYPwuuidX2UKGgGaAloD0MIeeV620z1GsCUhpRSlGgVSzJoFkdAto0aBe5WinV9lChoBmgJaA9DCEELCRhdTiHAlIaUUpRoFUsyaBZHQLaM7igkC3h1fZQoaAZoCWgPQwhXfEPhszUhwJSGlFKUaBVLMmgWR0C2jMTK1XvIdX2UKGgGaAloD0MIbHh6pSyzHcCUhpRSlGgVSzJoFkdAto21ejVQRHV9lChoBmgJaA9DCAq5Us+CACTAlIaUUpRoFUsyaBZHQLaNiWJJoTR1fZQoaAZoCWgPQwiFtTF2wpsawJSGlFKUaBVLMmgWR0C2jV18LKFJdX2UKGgGaAloD0MIgxlTsMZZHcCUhpRSlGgVSzJoFkdAto00HRkVe3V9lChoBmgJaA9DCHtMpDSbzyHAlIaUUpRoFUsyaBZHQLaOKdvsJIF1fZQoaAZoCWgPQwi+LsN/utEWwJSGlFKUaBVLMmgWR0C2jf3gDRtxdX2UKGgGaAloD0MIQQ+1bRj1GMCUhpRSlGgVSzJoFkdAto3SISDh+HV9lChoBmgJaA9DCAytTs5QnAjAlIaUUpRoFUsyaBZHQLaNqNDtw711fZQoaAZoCWgPQwiA8Qwa+icXwJSGlFKUaBVLMmgWR0C2jplPBSDRdX2UKGgGaAloD0MIKZZbWg3JIMCUhpRSlGgVSzJoFkdAto5tMg2ZRnV9lChoBmgJaA9DCO1+FeC7zRPAlIaUUpRoFUsyaBZHQLaOQV9F4LV1fZQoaAZoCWgPQwiEgefew6UYwJSGlFKUaBVLMmgWR0C2jhgAQxvfdX2UKGgGaAloD0MI0VynkZb6IcCUhpRSlGgVSzJoFkdAto8XfNzKcXV9lChoBmgJaA9DCI/f2/Rn/w3AlIaUUpRoFUsyaBZHQLaO61stTUB1fZQoaAZoCWgPQwiokCv1LHgVwJSGlFKUaBVLMmgWR0C2jr+C04R3dX2UKGgGaAloD0MIP+YDAp0JF8CUhpRSlGgVSzJoFkdAto6WVUuL8HV9lChoBmgJaA9DCPkQVI1ezRfAlIaUUpRoFUsyaBZHQLaPiWAf+0h1fZQoaAZoCWgPQwhNTBdi9ZcgwJSGlFKUaBVLMmgWR0C2j10xM36zdX2UKGgGaAloD0MIxanWwiw0H8CUhpRSlGgVSzJoFkdAto8xS5y2hXV9lChoBmgJaA9DCJ2FPe3wxxXAlIaUUpRoFUsyaBZHQLaPB+wkgOl1fZQoaAZoCWgPQwioGyjwTj4JwJSGlFKUaBVLMmgWR0C2kAA8fV7QdX2UKGgGaAloD0MIN4lBYOWAJ8CUhpRSlGgVSzJoFkdAto/UGiYb83V9lChoBmgJaA9DCFt4Xio2JhjAlIaUUpRoFUsyaBZHQLaPqDjR2KV1fZQoaAZoCWgPQwgQCHQmbdoXwJSGlFKUaBVLMmgWR0C2j37lNlAedX2UKGgGaAloD0MIezApPj4RFsCUhpRSlGgVSzJoFkdAtpBvQOWjXXV9lChoBmgJaA9DCM0f09o0xhPAlIaUUpRoFUsyaBZHQLaQQx5LRKJ1fZQoaAZoCWgPQwgzN9+I7pkQwJSGlFKUaBVLMmgWR0C2kBdIwudxdX2UKGgGaAloD0MIIorJG2AWEsCUhpRSlGgVSzJoFkdAto/t9w3o93V9lChoBmgJaA9DCKt14nK8CifAlIaUUpRoFUsyaBZHQLaQ4oBJZnt1fZQoaAZoCWgPQwi2oPfGEBATwJSGlFKUaBVLMmgWR0C2kLZlrdnCdX2UKGgGaAloD0MIVmKelbTSEMCUhpRSlGgVSzJoFkdAtpCKkbgjyHV9lChoBmgJaA9DCGQfZFkwCSTAlIaUUpRoFUsyaBZHQLaQYUBGQS11fZQoaAZoCWgPQwi0O6QYIIEQwJSGlFKUaBVLMmgWR0C2kU8f3evZdX2UKGgGaAloD0MIjV2iemtQG8CUhpRSlGgVSzJoFkdAtpEi9h7VrnV9lChoBmgJaA9DCFcJFoczHxfAlIaUUpRoFUsyaBZHQLaQ9xmTTv11fZQoaAZoCWgPQwh5eTpXlOIZwJSGlFKUaBVLMmgWR0C2kM3mzSkTdX2UKGgGaAloD0MIvcYuUb3lFMCUhpRSlGgVSzJoFkdAtpG9senyeHV9lChoBmgJaA9DCGu5MxMMPyLAlIaUUpRoFUsyaBZHQLaRkZYxL011fZQoaAZoCWgPQwjM7snDQlUkwJSGlFKUaBVLMmgWR0C2kWW/rSmZdX2UKGgGaAloD0MI+fTYlgE3EsCUhpRSlGgVSzJoFkdAtpE8a86FNHV9lChoBmgJaA9DCIwrLo7KjQfAlIaUUpRoFUsyaBZHQLaSLP/aQFN1fZQoaAZoCWgPQwiSPq2iP5QNwJSGlFKUaBVLMmgWR0C2kgDa4+bFdX2UKGgGaAloD0MI0Vs8vOcIIsCUhpRSlGgVSzJoFkdAtpHVA/s3Q3V9lChoBmgJaA9DCOhn6nWLABvAlIaUUpRoFUsyaBZHQLaRq6nzg/F1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 100000, "n_steps": 5, "gamma": 0.9, "gae_lambda": 0.98, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -5.336576071102172, "std_reward": 1.399724956455727, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-11T13:41:31.041487"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2381
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c708e7a6d96d2cebe307a5e370a41971c67ff04cfe13c91a648ea24785916050
|
3 |
size 2381
|