ghassenhannachi
commited on
Commit
·
0b39d4e
1
Parent(s):
83ed4f5
Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +13 -13
- a2c-PandaReachDense-v2/policy.optimizer.pth +1 -1
- a2c-PandaReachDense-v2/policy.pth +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -5.39 +/- 1.76
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7cfddda0944c2f524de4804e7eacf51954137452635aef8e1dd2485a32ce513c
|
3 |
+
size 107993
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -4,9 +4,9 @@
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc._abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
@@ -41,12 +41,12 @@
|
|
41 |
"_np_random": null
|
42 |
},
|
43 |
"n_envs": 4,
|
44 |
-
"num_timesteps":
|
45 |
-
"_total_timesteps":
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
-
"start_time":
|
50 |
"learning_rate": 0.0007,
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
@@ -55,10 +55,10 @@
|
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
-
":serialized:": "
|
59 |
-
"achieved_goal": "[[0.
|
60 |
-
"desired_goal": "[[
|
61 |
-
"observation": "[[
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -66,9 +66,9 @@
|
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
-
"desired_goal": "[[
|
72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
@@ -77,13 +77,13 @@
|
|
77 |
"_current_progress_remaining": 0.0,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
84 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
},
|
86 |
-
"_n_updates":
|
87 |
"n_steps": 5,
|
88 |
"gamma": 0.99,
|
89 |
"gae_lambda": 1.0,
|
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fa665287f70>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fa66528b040>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
|
|
41 |
"_np_random": null
|
42 |
},
|
43 |
"n_envs": 4,
|
44 |
+
"num_timesteps": 2000000,
|
45 |
+
"_total_timesteps": 2000000,
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
+
"start_time": 1680184023660999125,
|
50 |
"learning_rate": 0.0007,
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
|
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAXcuHPpU9hj0wvEM/XcuHPpU9hj0wvEM/XcuHPpU9hj0wvEM/XcuHPpU9hj0wvEM/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAiVFIv8Xayj+w69q//eU6P8X7AT7kwzG/PpHCP5UV0T86oAq/aAjdv+BxVz8/Udy/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABdy4c+lT2GPTC8Qz+8rg88BrlXOp5Ovjxdy4c+lT2GPTC8Qz+8rg88BrlXOp5Ovjxdy4c+lT2GPTC8Qz+8rg88BrlXOp5Ovjxdy4c+lT2GPTC8Qz+8rg88BrlXOp5OvjyUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[0.2652234 0.06554715 0.76459026]\n [0.2652234 0.06554715 0.76459026]\n [0.2652234 0.06554715 0.76459026]\n [0.2652234 0.06554715 0.76459026]]",
|
60 |
+
"desired_goal": "[[-0.7824941 1.5848013 -1.7103176 ]\n [ 0.73007184 0.12693699 -0.6943953 ]\n [ 1.5200574 1.6334711 -0.54150736]\n [-1.726819 0.84158134 -1.7212294 ]]",
|
61 |
+
"observation": "[[0.2652234 0.06554715 0.76459026 0.00876969 0.00082292 0.02323085]\n [0.2652234 0.06554715 0.76459026 0.00876969 0.00082292 0.02323085]\n [0.2652234 0.06554715 0.76459026 0.00876969 0.00082292 0.02323085]\n [0.2652234 0.06554715 0.76459026 0.00876969 0.00082292 0.02323085]]"
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAVECivJJsET6qCcs8pJ4LPl4Ybb3R3YM+xoDrPX2tHb1UcC898sV7PQq+Dz78J1w8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[-0.01980606 0.14201573 0.02478488]\n [ 0.13634735 -0.05788457 0.2575517 ]\n [ 0.11499171 -0.03849553 0.04283173]\n [ 0.06146807 0.14037338 0.01343727]]",
|
72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
|
|
77 |
"_current_progress_remaining": 0.0,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIIa0x6IQgEsCUhpRSlIwBbJRLMowBdJRHQLVObWkadc11fZQoaAZoCWgPQwiCqPsApAYbwJSGlFKUaBVLMmgWR0C1Tk/egte2dX2UKGgGaAloD0MIxw+VRszcGcCUhpRSlGgVSzJoFkdAtU4xu+AVf3V9lChoBmgJaA9DCCkEcokjrwfAlIaUUpRoFUsyaBZHQLVOExB3Roh1fZQoaAZoCWgPQwgTZARUOAITwJSGlFKUaBVLMmgWR0C1Ttth7VridX2UKGgGaAloD0MILSP1nsrJDcCUhpRSlGgVSzJoFkdAtU690cOsk3V9lChoBmgJaA9DCN5UpMLYYgrAlIaUUpRoFUsyaBZHQLVOn7RfF751fZQoaAZoCWgPQwj7HvXXK0wIwJSGlFKUaBVLMmgWR0C1ToD1schldX2UKGgGaAloD0MIvyfWqfI9EcCUhpRSlGgVSzJoFkdAtU9H7O3UhHV9lChoBmgJaA9DCGmLa3wmmxPAlIaUUpRoFUsyaBZHQLVPKlXA/LV1fZQoaAZoCWgPQwgpP6n26fgVwJSGlFKUaBVLMmgWR0C1TwwwTM7mdX2UKGgGaAloD0MIDECjdOkvEMCUhpRSlGgVSzJoFkdAtU7tcVxjrnV9lChoBmgJaA9DCC5zuiwmtgPAlIaUUpRoFUsyaBZHQLVPsr4Fia11fZQoaAZoCWgPQwhNLPAV3eoUwJSGlFKUaBVLMmgWR0C1T5UsjFAFdX2UKGgGaAloD0MImBdgH536CcCUhpRSlGgVSzJoFkdAtU93IsAeaXV9lChoBmgJaA9DCO4FZoUi3RPAlIaUUpRoFUsyaBZHQLVPWGO+7Dl1fZQoaAZoCWgPQwicU8kAUGUPwJSGlFKUaBVLMmgWR0C1UCq86FM7dX2UKGgGaAloD0MIMnIW9rRDDcCUhpRSlGgVSzJoFkdAtVANOHnEEXV9lChoBmgJaA9DCIRhwJKreBXAlIaUUpRoFUsyaBZHQLVP7x0dRzl1fZQoaAZoCWgPQwgjoMIRpFIPwJSGlFKUaBVLMmgWR0C1T9B4QjD9dX2UKGgGaAloD0MIdGIP7WOlCsCUhpRSlGgVSzJoFkdAtVCbQ9ic5XV9lChoBmgJaA9DCJJaKJmcOhTAlIaUUpRoFUsyaBZHQLVQfbmEGqx1fZQoaAZoCWgPQwicFOY9zpQJwJSGlFKUaBVLMmgWR0C1UF+bd8ArdX2UKGgGaAloD0MISl0yjpFMB8CUhpRSlGgVSzJoFkdAtVBA7Rv3rXV9lChoBmgJaA9DCEUqjC0EWRfAlIaUUpRoFUsyaBZHQLVRBhzNliB1fZQoaAZoCWgPQwjE6SRbXY4dwJSGlFKUaBVLMmgWR0C1UOiThYNidX2UKGgGaAloD0MIMEeP39vUDMCUhpRSlGgVSzJoFkdAtVDKdqcmSnV9lChoBmgJaA9DCA0c0NIVLBLAlIaUUpRoFUsyaBZHQLVQq8a4tpV1fZQoaAZoCWgPQwjVlc/yPBgZwJSGlFKUaBVLMmgWR0C1UXbtiQT3dX2UKGgGaAloD0MIkuo7vyixEMCUhpRSlGgVSzJoFkdAtVFZYU34sXV9lChoBmgJaA9DCBnnb0IhchTAlIaUUpRoFUsyaBZHQLVROz+3pfR1fZQoaAZoCWgPQwh4DmWoilkRwJSGlFKUaBVLMmgWR0C1URyPhhphdX2UKGgGaAloD0MIj6omiLq/GMCUhpRSlGgVSzJoFkdAtVHiqZML4XV9lChoBmgJaA9DCIWWdf9YCArAlIaUUpRoFUsyaBZHQLVRxR02cax1fZQoaAZoCWgPQwjjFvNzQ7MKwJSGlFKUaBVLMmgWR0C1Uab8iwB6dX2UKGgGaAloD0MIUMJM279CHMCUhpRSlGgVSzJoFkdAtVGIRvm5lXV9lChoBmgJaA9DCAghIF9CdRnAlIaUUpRoFUsyaBZHQLVSUM7EHdJ1fZQoaAZoCWgPQwgQBMjQsSMSwJSGlFKUaBVLMmgWR0C1UjM+RoysdX2UKGgGaAloD0MI6bga2ZU2EMCUhpRSlGgVSzJoFkdAtVIVFEy+H3V9lChoBmgJaA9DCIRGsHH96xfAlIaUUpRoFUsyaBZHQLVR9mXw9aF1fZQoaAZoCWgPQwhuv3yyYkgXwJSGlFKUaBVLMmgWR0C1Ur0TxoZidX2UKGgGaAloD0MITuyhfaygBsCUhpRSlGgVSzJoFkdAtVKff0mMO3V9lChoBmgJaA9DCK5FC9C2GhHAlIaUUpRoFUsyaBZHQLVSgV3ljmV1fZQoaAZoCWgPQwg25QrvcvEHwJSGlFKUaBVLMmgWR0C1UmKh+OOsdX2UKGgGaAloD0MIL/1LUpmSGcCUhpRSlGgVSzJoFkdAtVMpGQSzxHV9lChoBmgJaA9DCAUVVb/SGRXAlIaUUpRoFUsyaBZHQLVTC4vexfR1fZQoaAZoCWgPQwhgkV8/xBYcwJSGlFKUaBVLMmgWR0C1Uu1yeZogdX2UKGgGaAloD0MIFm2Oc5uQFMCUhpRSlGgVSzJoFkdAtVLOuyNXHXV9lChoBmgJaA9DCB8PfXcrCwvAlIaUUpRoFUsyaBZHQLVTuYP5HmR1fZQoaAZoCWgPQwjbb+1ESTgWwJSGlFKUaBVLMmgWR0C1U5wvpQk5dX2UKGgGaAloD0MIGHsvvmgPB8CUhpRSlGgVSzJoFkdAtVN+aZx7zHV9lChoBmgJaA9DCDuKc9TRAR/AlIaUUpRoFUsyaBZHQLVTX/wAlv91fZQoaAZoCWgPQwj6t8t+3ekVwJSGlFKUaBVLMmgWR0C1VGBacI7edX2UKGgGaAloD0MIgsXhzK+GFMCUhpRSlGgVSzJoFkdAtVRDDuSfUXV9lChoBmgJaA9DCFtfJLTlXBLAlIaUUpRoFUsyaBZHQLVUJTj/+851fZQoaAZoCWgPQwiaCBueXkkJwJSGlFKUaBVLMmgWR0C1VAbE5yU+dX2UKGgGaAloD0MIdO0L6IUrEcCUhpRSlGgVSzJoFkdAtVUNY+0PYnV9lChoBmgJaA9DCAMn28AduBLAlIaUUpRoFUsyaBZHQLVU8DCP6sR1fZQoaAZoCWgPQwjwGYnQCLYVwJSGlFKUaBVLMmgWR0C1VNJaePJadX2UKGgGaAloD0MIBFYOLbLtFMCUhpRSlGgVSzJoFkdAtVS0PkJa7nV9lChoBmgJaA9DCE4qGmt/FxjAlIaUUpRoFUsyaBZHQLVVw72criF1fZQoaAZoCWgPQwjdmQmGc+0awJSGlFKUaBVLMmgWR0C1VaZ/0/W2dX2UKGgGaAloD0MIRpc3h2vVBsCUhpRSlGgVSzJoFkdAtVWIuUUwjHV9lChoBmgJaA9DCJ7Swfo/JwjAlIaUUpRoFUsyaBZHQLVValANXo11fZQoaAZoCWgPQwjNOuP74nIIwJSGlFKUaBVLMmgWR0C1VnbtiQT3dX2UKGgGaAloD0MIorQ3+MJUEcCUhpRSlGgVSzJoFkdAtVZZuJk5InV9lChoBmgJaA9DCAvPS8XG7BLAlIaUUpRoFUsyaBZHQLVWO+uvECN1fZQoaAZoCWgPQwhV2uIan2kJwJSGlFKUaBVLMmgWR0C1Vh2CqZMMdX2UKGgGaAloD0MIflcE/1uJDsCUhpRSlGgVSzJoFkdAtVcno5ggHXV9lChoBmgJaA9DCGHe40wTxhLAlIaUUpRoFUsyaBZHQLVXCm6oVEd1fZQoaAZoCWgPQwioVImytwQVwJSGlFKUaBVLMmgWR0C1VuyMglnidX2UKGgGaAloD0MII59XPPU4GMCUhpRSlGgVSzJoFkdAtVbONGViWnV9lChoBmgJaA9DCCEDeXb5BhHAlIaUUpRoFUsyaBZHQLVXxzMA3kx1fZQoaAZoCWgPQwiWsgxxrFsVwJSGlFKUaBVLMmgWR0C1V6mu9vjwdX2UKGgGaAloD0MImWN5Vz3QGsCUhpRSlGgVSzJoFkdAtVeLmA9V3nV9lChoBmgJaA9DCPUSY5l+yQnAlIaUUpRoFUsyaBZHQLVXbP4mCy11fZQoaAZoCWgPQwjzWgndJREEwJSGlFKUaBVLMmgWR0C1WDnOv+wUdX2UKGgGaAloD0MIC0Pk9PV8A8CUhpRSlGgVSzJoFkdAtVgcO5J9RnV9lChoBmgJaA9DCNqQf2YQvxHAlIaUUpRoFUsyaBZHQLVX/iUxEfF1fZQoaAZoCWgPQwjKMy+H3bcLwJSGlFKUaBVLMmgWR0C1V99+1Bt2dX2UKGgGaAloD0MI2ZQrvMvFFMCUhpRSlGgVSzJoFkdAtVirLyMDOnV9lChoBmgJaA9DCKRxqN+F7RHAlIaUUpRoFUsyaBZHQLVYjaJhvzh1fZQoaAZoCWgPQwhhTzv8NVkNwJSGlFKUaBVLMmgWR0C1WG+LehwmdX2UKGgGaAloD0MIv7UTJSGhHcCUhpRSlGgVSzJoFkdAtVhQ2l2vCHV9lChoBmgJaA9DCNgubTgs/RDAlIaUUpRoFUsyaBZHQLVZG3BYV7B1fZQoaAZoCWgPQwhdFhObjzsewJSGlFKUaBVLMmgWR0C1WP3xe9i+dX2UKGgGaAloD0MIGTxM++Y+EMCUhpRSlGgVSzJoFkdAtVjf1VYISnV9lChoBmgJaA9DCJAty9dlOAbAlIaUUpRoFUsyaBZHQLVYwSWqtHR1fZQoaAZoCWgPQwjnU8cqpTcSwJSGlFKUaBVLMmgWR0C1WYgarFOxdX2UKGgGaAloD0MIUFQ2rKkMEsCUhpRSlGgVSzJoFkdAtVlqgg5imXV9lChoBmgJaA9DCDkNUYU/ExHAlIaUUpRoFUsyaBZHQLVZTGKhtch1fZQoaAZoCWgPQwh/3795cQIJwJSGlFKUaBVLMmgWR0C1WS2jj7yhdX2UKGgGaAloD0MIZCDPLt9aBcCUhpRSlGgVSzJoFkdAtVnyk1uR93V9lChoBmgJaA9DCFEtIorJ+wfAlIaUUpRoFUsyaBZHQLVZ1QPqcEx1fZQoaAZoCWgPQwh2bATidR0QwJSGlFKUaBVLMmgWR0C1Wbbl3hXKdX2UKGgGaAloD0MIsVOsGoS5FcCUhpRSlGgVSzJoFkdAtVmYK0D2anV9lChoBmgJaA9DCNDsurciMQXAlIaUUpRoFUsyaBZHQLVaXpJf6XV1fZQoaAZoCWgPQwhFhH8RNCYOwJSGlFKUaBVLMmgWR0C1WkEPYnOTdX2UKGgGaAloD0MIMZV+wtk9EsCUhpRSlGgVSzJoFkdAtVoi7EpAlnV9lChoBmgJaA9DCHk/br98ohPAlIaUUpRoFUsyaBZHQLVaBD6Fds11ZS4="
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
84 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
},
|
86 |
+
"_n_updates": 100000,
|
87 |
"n_steps": 5,
|
88 |
"gamma": 0.99,
|
89 |
"gae_lambda": 1.0,
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 44734
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a80de92b1fbd607c885e424ae5c0f5b1b180328c8e1d651bbffba3401b7182f3
|
3 |
size 44734
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 46014
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cd147d5f19aa057206f7c91c402ebc00e9f563055ce3ad38dce4662aa28aa8a0
|
3 |
size 46014
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ff31a590160>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ff31a58e7c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680104584187273434, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAZRXcPvbutjzTVvA+ZRXcPvbutjzTVvA+ZRXcPvbutjzTVvA+ZRXcPvbutjzTVvA+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAArCEGPq11sL5bB6E/6m+Vv6r6ST+quMi/ngoUP3vkCT+MCWE/L9uGvsu9QT+tTSm/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABlFdw+9u62PNNW8D7MU6q7hvGjO0AelLtlFdw+9u62PNNW8D7MU6q7hvGjO0AelLtlFdw+9u62PNNW8D7MU6q7hvGjO0AelLtlFdw+9u62PNNW8D7MU6q7hvGjO0AelLuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.42985073 0.02233074 0.46941242]\n [0.42985073 0.02233074 0.46941242]\n [0.42985073 0.02233074 0.46941242]\n [0.42985073 0.02233074 0.46941242]]", "desired_goal": "[[ 0.13098782 -0.3446478 1.258037 ]\n [-1.1674778 0.7889811 -1.5681355 ]\n [ 0.578287 0.5386426 0.8790519 ]\n [-0.263391 0.75680226 -0.6613415 ]]", "observation": "[[ 0.42985073 0.02233074 0.46941242 -0.00519798 0.00500316 -0.00452021]\n [ 0.42985073 0.02233074 0.46941242 -0.00519798 0.00500316 -0.00452021]\n [ 0.42985073 0.02233074 0.46941242 -0.00519798 0.00500316 -0.00452021]\n [ 0.42985073 0.02233074 0.46941242 -0.00519798 0.00500316 -0.00452021]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAjwOVPcuY4zwsdmA9xnf+PS9Swz2hAQg+oI8+PXUbJL1RCSA9WTR8PDuovb05md89lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.07276069 0.02778282 0.0548002 ]\n [ 0.12425189 0.0953716 0.13281871]\n [ 0.04652369 -0.04006525 0.03907138]\n [ 0.01539334 -0.09260603 0.10917897]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI6dZrelAgLMCUhpRSlIwBbJRLMowBdJRHQKyTij9GZu11fZQoaAZoCWgPQwjXw5eJIvQUwJSGlFKUaBVLMmgWR0Csk0BK+SKWdX2UKGgGaAloD0MII/jfSnaMFMCUhpRSlGgVSzJoFkdArJL2MGX5WXV9lChoBmgJaA9DCCKq8Gd4gx3AlIaUUpRoFUsyaBZHQKySqh6By0d1fZQoaAZoCWgPQwhRiIBDqMITwJSGlFKUaBVLMmgWR0CslN4dQwbmdX2UKGgGaAloD0MI9katMH1/EsCUhpRSlGgVSzJoFkdArJSTaPCEYnV9lChoBmgJaA9DCOPg0jHnGSbAlIaUUpRoFUsyaBZHQKyUSHaews51fZQoaAZoCWgPQwjcuwZ96e0QwJSGlFKUaBVLMmgWR0Csk/waJhvzdX2UKGgGaAloD0MIhbGFIAfFIcCUhpRSlGgVSzJoFkdArJaFOuaF23V9lChoBmgJaA9DCMQFoFG63CDAlIaUUpRoFUsyaBZHQKyWPgogFHJ1fZQoaAZoCWgPQwgVqwZhbhcdwJSGlFKUaBVLMmgWR0CslfXgk1MudX2UKGgGaAloD0MIixpMw/AREcCUhpRSlGgVSzJoFkdArJWqNsFdLXV9lChoBmgJaA9DCA2K5gEsSi/AlIaUUpRoFUsyaBZHQKyY4F8G9pR1fZQoaAZoCWgPQwgIAmTo2PkhwJSGlFKUaBVLMmgWR0CsmJcvEjxDdX2UKGgGaAloD0MIh8Woa+0dC8CUhpRSlGgVSzJoFkdArJhOFev6j3V9lChoBmgJaA9DCDP5ZpsbkxfAlIaUUpRoFUsyaBZHQKyYAmygPEt1fZQoaAZoCWgPQwgA/5QqUYYTwJSGlFKUaBVLMmgWR0Csm0hqCYkWdX2UKGgGaAloD0MIC7YRT3azIsCUhpRSlGgVSzJoFkdArJr/XVbzLHV9lChoBmgJaA9DCORqZFdaxhrAlIaUUpRoFUsyaBZHQKyataq0dBB1fZQoaAZoCWgPQwgomZzaGQYHwJSGlFKUaBVLMmgWR0CsmmtWEK3NdX2UKGgGaAloD0MIP1jGhm4WIsCUhpRSlGgVSzJoFkdArJ3AJZ4fOnV9lChoBmgJaA9DCMLdWbvtEhTAlIaUUpRoFUsyaBZHQKyddxIatLd1fZQoaAZoCWgPQwgf8wGBzqQVwJSGlFKUaBVLMmgWR0CsnS0v4/NadX2UKGgGaAloD0MIjo8WZwzjGsCUhpRSlGgVSzJoFkdArJzjZFocrHV9lChoBmgJaA9DCD7NyYtM2CPAlIaUUpRoFUsyaBZHQKygVGPPszF1fZQoaAZoCWgPQwiSdM3km20KwJSGlFKUaBVLMmgWR0CsoAqDkELZdX2UKGgGaAloD0MIpkQSvYyyJcCUhpRSlGgVSzJoFkdArJ/Aa1kUbnV9lChoBmgJaA9DCExuFFlriBrAlIaUUpRoFUsyaBZHQKyfdum78Nx1fZQoaAZoCWgPQwiJCP8iaPwiwJSGlFKUaBVLMmgWR0CsoeMXJo0zdX2UKGgGaAloD0MIBvGBHf8FHMCUhpRSlGgVSzJoFkdArKGYtFrmAHV9lChoBmgJaA9DCM6o+Sr5uB7AlIaUUpRoFUsyaBZHQKyhTdOZb6h1fZQoaAZoCWgPQwgw1cxaCrgYwJSGlFKUaBVLMmgWR0CsoQFMqSX/dX2UKGgGaAloD0MIVp3VAnvcH8CUhpRSlGgVSzJoFkdArKOAsoUi6nV9lChoBmgJaA9DCEzGMZI9AgvAlIaUUpRoFUsyaBZHQKyjNsJIDo11fZQoaAZoCWgPQwgGn+bkRbYgwJSGlFKUaBVLMmgWR0Csout/4IrwdX2UKGgGaAloD0MITFKZYg6yEcCUhpRSlGgVSzJoFkdArKKe8oQWe3V9lChoBmgJaA9DCH8xW7IqGiDAlIaUUpRoFUsyaBZHQKylKDV6NVB1fZQoaAZoCWgPQwjPSe8bXxMwwJSGlFKUaBVLMmgWR0CspN3rUsnRdX2UKGgGaAloD0MIvr9Be/UZIMCUhpRSlGgVSzJoFkdArKSTB42S+3V9lChoBmgJaA9DCDnThO0ngwDAlIaUUpRoFUsyaBZHQKykRxIatLd1fZQoaAZoCWgPQwhrZFdaRnoRwJSGlFKUaBVLMmgWR0CspoWIwdsBdX2UKGgGaAloD0MI+WUwRiRiIMCUhpRSlGgVSzJoFkdArKY7IxQBP3V9lChoBmgJaA9DCAMjL2tiIRXAlIaUUpRoFUsyaBZHQKyl7/HYHxB1fZQoaAZoCWgPQwhD44kgzgMdwJSGlFKUaBVLMmgWR0CspaN/WlMzdX2UKGgGaAloD0MIGCe+2lGcG8CUhpRSlGgVSzJoFkdArKflFMIu5HV9lChoBmgJaA9DCBA7U+i8thbAlIaUUpRoFUsyaBZHQKynmnG82751fZQoaAZoCWgPQwgLR5BKsSMcwJSGlFKUaBVLMmgWR0Csp0+4b0e2dX2UKGgGaAloD0MIsmMjEK8bEcCUhpRSlGgVSzJoFkdArKcEdmxt53V9lChoBmgJaA9DCP5F0JhJJBnAlIaUUpRoFUsyaBZHQKypkMefZmJ1fZQoaAZoCWgPQwiW6gJeZugdwJSGlFKUaBVLMmgWR0CsqUa7dznzdX2UKGgGaAloD0MI8S+CxkzyJsCUhpRSlGgVSzJoFkdArKj74k/r0XV9lChoBmgJaA9DCPGD86ljFSHAlIaUUpRoFUsyaBZHQKyosDbrTph1fZQoaAZoCWgPQwhaKQRyiUMZwJSGlFKUaBVLMmgWR0Csqwi6xxDLdX2UKGgGaAloD0MIzmxX6IMFIMCUhpRSlGgVSzJoFkdArKq+SlnAZnV9lChoBmgJaA9DCDMxXYjV3xTAlIaUUpRoFUsyaBZHQKyqdAwfyPN1fZQoaAZoCWgPQwj/WIgOgVMXwJSGlFKUaBVLMmgWR0CsqieY+jdpdX2UKGgGaAloD0MIyNEcWflNJMCUhpRSlGgVSzJoFkdArKxXY4ACGXV9lChoBmgJaA9DCBtHrMWnYBXAlIaUUpRoFUsyaBZHQKysDMotthx1fZQoaAZoCWgPQwgAAtaqXZMewJSGlFKUaBVLMmgWR0Csq8HFYMfBdX2UKGgGaAloD0MISb2nctqzHMCUhpRSlGgVSzJoFkdArKt1a4c3l3V9lChoBmgJaA9DCJPDJ51IABrAlIaUUpRoFUsyaBZHQKyt0P3BYV91fZQoaAZoCWgPQwiq7pHNVRMdwJSGlFKUaBVLMmgWR0CsrYbi6xxDdX2UKGgGaAloD0MI7FBNSdYxGMCUhpRSlGgVSzJoFkdArK07/bTMJXV9lChoBmgJaA9DCLDJGvUQjRvAlIaUUpRoFUsyaBZHQKys76LwWnF1fZQoaAZoCWgPQwi1FmahnTMmwJSGlFKUaBVLMmgWR0Csrw2PcSGrdX2UKGgGaAloD0MIEYqtoGkpJMCUhpRSlGgVSzJoFkdArK7DJ4jbBXV9lChoBmgJaA9DCE59IHnnsBfAlIaUUpRoFUsyaBZHQKyud+GXXy11fZQoaAZoCWgPQwgpB7MJMEwWwJSGlFKUaBVLMmgWR0CsriupjtojdX2UKGgGaAloD0MIt5bJcDxXLMCUhpRSlGgVSzJoFkdArLB3XGwRoXV9lChoBmgJaA9DCKQzMPKyphfAlIaUUpRoFUsyaBZHQKywLIqbz9V1fZQoaAZoCWgPQwgDtRg8TJsawJSGlFKUaBVLMmgWR0Csr+HhKlHjdX2UKGgGaAloD0MIuOnPfqREMMCUhpRSlGgVSzJoFkdArK+Vrbg0j3V9lChoBmgJaA9DCK71RUJbPhfAlIaUUpRoFUsyaBZHQKyxvGEwnIB1fZQoaAZoCWgPQwgqHaz/c5gkwJSGlFKUaBVLMmgWR0CssXGz8gp0dX2UKGgGaAloD0MINA71u7B9KMCUhpRSlGgVSzJoFkdArLEmetjkMnV9lChoBmgJaA9DCErx8QnZCRzAlIaUUpRoFUsyaBZHQKyw2gh8pkR1fZQoaAZoCWgPQwiimLwBZp4SwJSGlFKUaBVLMmgWR0Cssw1h9b5edX2UKGgGaAloD0MIy4P0FDn0G8CUhpRSlGgVSzJoFkdArLLCuZCv5nV9lChoBmgJaA9DCB2PGaiM/xfAlIaUUpRoFUsyaBZHQKyyd2/SH/N1fZQoaAZoCWgPQwi5quy7IhgWwJSGlFKUaBVLMmgWR0CssitvwVj7dX2UKGgGaAloD0MIb6DAO/nUF8CUhpRSlGgVSzJoFkdArLRXWe6I33V9lChoBmgJaA9DCJXSM73EaCXAlIaUUpRoFUsyaBZHQKy0DNJOFg51fZQoaAZoCWgPQwiLql/pfCgXwJSGlFKUaBVLMmgWR0Css8GTC+DfdX2UKGgGaAloD0MIzsMJTKdNJcCUhpRSlGgVSzJoFkdArLN1N5+pfnV9lChoBmgJaA9DCEmcFVETjRHAlIaUUpRoFUsyaBZHQKy20cpb2UV1fZQoaAZoCWgPQwjP+L64VFUZwJSGlFKUaBVLMmgWR0CstonNX5nEdX2UKGgGaAloD0MIJ6Wg20sKGsCUhpRSlGgVSzJoFkdArLY/cBU70XV9lChoBmgJaA9DCGsMOiF0oBrAlIaUUpRoFUsyaBZHQKy19O0svqV1fZQoaAZoCWgPQwhXfEPhszUYwJSGlFKUaBVLMmgWR0CsuP0FB6a9dX2UKGgGaAloD0MIhLcHISCvJMCUhpRSlGgVSzJoFkdArLiz0e2d/nV9lChoBmgJaA9DCH6K48CrlSnAlIaUUpRoFUsyaBZHQKy4ahgVoHt1fZQoaAZoCWgPQwg/yR02kcklwJSGlFKUaBVLMmgWR0CsuB6w2VFAdX2UKGgGaAloD0MIzeUGQx0GGcCUhpRSlGgVSzJoFkdArLtpaRp1zXV9lChoBmgJaA9DCBzvjozVphXAlIaUUpRoFUsyaBZHQKy7IU3XI2h1fZQoaAZoCWgPQwhcHJWbqJUVwJSGlFKUaBVLMmgWR0CsutcL8aXKdX2UKGgGaAloD0MIbvse9deTKMCUhpRSlGgVSzJoFkdArLqML0BfbHV9lChoBmgJaA9DCKSIDKt48xfAlIaUUpRoFUsyaBZHQKy9lQD3dsV1fZQoaAZoCWgPQwgcCwqDMl0UwJSGlFKUaBVLMmgWR0CsvUudXko4dX2UKGgGaAloD0MIzhySWigZIMCUhpRSlGgVSzJoFkdArL0BaouPFXV9lChoBmgJaA9DCNsZprbUQSTAlIaUUpRoFUsyaBZHQKy8tjMmnfl1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fa665287f70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fa66528b040>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680184023660999125, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAXcuHPpU9hj0wvEM/XcuHPpU9hj0wvEM/XcuHPpU9hj0wvEM/XcuHPpU9hj0wvEM/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAiVFIv8Xayj+w69q//eU6P8X7AT7kwzG/PpHCP5UV0T86oAq/aAjdv+BxVz8/Udy/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABdy4c+lT2GPTC8Qz+8rg88BrlXOp5Ovjxdy4c+lT2GPTC8Qz+8rg88BrlXOp5Ovjxdy4c+lT2GPTC8Qz+8rg88BrlXOp5Ovjxdy4c+lT2GPTC8Qz+8rg88BrlXOp5OvjyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.2652234 0.06554715 0.76459026]\n [0.2652234 0.06554715 0.76459026]\n [0.2652234 0.06554715 0.76459026]\n [0.2652234 0.06554715 0.76459026]]", "desired_goal": "[[-0.7824941 1.5848013 -1.7103176 ]\n [ 0.73007184 0.12693699 -0.6943953 ]\n [ 1.5200574 1.6334711 -0.54150736]\n [-1.726819 0.84158134 -1.7212294 ]]", "observation": "[[0.2652234 0.06554715 0.76459026 0.00876969 0.00082292 0.02323085]\n [0.2652234 0.06554715 0.76459026 0.00876969 0.00082292 0.02323085]\n [0.2652234 0.06554715 0.76459026 0.00876969 0.00082292 0.02323085]\n [0.2652234 0.06554715 0.76459026 0.00876969 0.00082292 0.02323085]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAVECivJJsET6qCcs8pJ4LPl4Ybb3R3YM+xoDrPX2tHb1UcC898sV7PQq+Dz78J1w8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.01980606 0.14201573 0.02478488]\n [ 0.13634735 -0.05788457 0.2575517 ]\n [ 0.11499171 -0.03849553 0.04283173]\n [ 0.06146807 0.14037338 0.01343727]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIIa0x6IQgEsCUhpRSlIwBbJRLMowBdJRHQLVObWkadc11fZQoaAZoCWgPQwiCqPsApAYbwJSGlFKUaBVLMmgWR0C1Tk/egte2dX2UKGgGaAloD0MIxw+VRszcGcCUhpRSlGgVSzJoFkdAtU4xu+AVf3V9lChoBmgJaA9DCCkEcokjrwfAlIaUUpRoFUsyaBZHQLVOExB3Roh1fZQoaAZoCWgPQwgTZARUOAITwJSGlFKUaBVLMmgWR0C1Ttth7VridX2UKGgGaAloD0MILSP1nsrJDcCUhpRSlGgVSzJoFkdAtU690cOsk3V9lChoBmgJaA9DCN5UpMLYYgrAlIaUUpRoFUsyaBZHQLVOn7RfF751fZQoaAZoCWgPQwj7HvXXK0wIwJSGlFKUaBVLMmgWR0C1ToD1schldX2UKGgGaAloD0MIvyfWqfI9EcCUhpRSlGgVSzJoFkdAtU9H7O3UhHV9lChoBmgJaA9DCGmLa3wmmxPAlIaUUpRoFUsyaBZHQLVPKlXA/LV1fZQoaAZoCWgPQwgpP6n26fgVwJSGlFKUaBVLMmgWR0C1TwwwTM7mdX2UKGgGaAloD0MIDECjdOkvEMCUhpRSlGgVSzJoFkdAtU7tcVxjrnV9lChoBmgJaA9DCC5zuiwmtgPAlIaUUpRoFUsyaBZHQLVPsr4Fia11fZQoaAZoCWgPQwhNLPAV3eoUwJSGlFKUaBVLMmgWR0C1T5UsjFAFdX2UKGgGaAloD0MImBdgH536CcCUhpRSlGgVSzJoFkdAtU93IsAeaXV9lChoBmgJaA9DCO4FZoUi3RPAlIaUUpRoFUsyaBZHQLVPWGO+7Dl1fZQoaAZoCWgPQwicU8kAUGUPwJSGlFKUaBVLMmgWR0C1UCq86FM7dX2UKGgGaAloD0MIMnIW9rRDDcCUhpRSlGgVSzJoFkdAtVANOHnEEXV9lChoBmgJaA9DCIRhwJKreBXAlIaUUpRoFUsyaBZHQLVP7x0dRzl1fZQoaAZoCWgPQwgjoMIRpFIPwJSGlFKUaBVLMmgWR0C1T9B4QjD9dX2UKGgGaAloD0MIdGIP7WOlCsCUhpRSlGgVSzJoFkdAtVCbQ9ic5XV9lChoBmgJaA9DCJJaKJmcOhTAlIaUUpRoFUsyaBZHQLVQfbmEGqx1fZQoaAZoCWgPQwicFOY9zpQJwJSGlFKUaBVLMmgWR0C1UF+bd8ArdX2UKGgGaAloD0MISl0yjpFMB8CUhpRSlGgVSzJoFkdAtVBA7Rv3rXV9lChoBmgJaA9DCEUqjC0EWRfAlIaUUpRoFUsyaBZHQLVRBhzNliB1fZQoaAZoCWgPQwjE6SRbXY4dwJSGlFKUaBVLMmgWR0C1UOiThYNidX2UKGgGaAloD0MIMEeP39vUDMCUhpRSlGgVSzJoFkdAtVDKdqcmSnV9lChoBmgJaA9DCA0c0NIVLBLAlIaUUpRoFUsyaBZHQLVQq8a4tpV1fZQoaAZoCWgPQwjVlc/yPBgZwJSGlFKUaBVLMmgWR0C1UXbtiQT3dX2UKGgGaAloD0MIkuo7vyixEMCUhpRSlGgVSzJoFkdAtVFZYU34sXV9lChoBmgJaA9DCBnnb0IhchTAlIaUUpRoFUsyaBZHQLVROz+3pfR1fZQoaAZoCWgPQwh4DmWoilkRwJSGlFKUaBVLMmgWR0C1URyPhhphdX2UKGgGaAloD0MIj6omiLq/GMCUhpRSlGgVSzJoFkdAtVHiqZML4XV9lChoBmgJaA9DCIWWdf9YCArAlIaUUpRoFUsyaBZHQLVRxR02cax1fZQoaAZoCWgPQwjjFvNzQ7MKwJSGlFKUaBVLMmgWR0C1Uab8iwB6dX2UKGgGaAloD0MIUMJM279CHMCUhpRSlGgVSzJoFkdAtVGIRvm5lXV9lChoBmgJaA9DCAghIF9CdRnAlIaUUpRoFUsyaBZHQLVSUM7EHdJ1fZQoaAZoCWgPQwgQBMjQsSMSwJSGlFKUaBVLMmgWR0C1UjM+RoysdX2UKGgGaAloD0MI6bga2ZU2EMCUhpRSlGgVSzJoFkdAtVIVFEy+H3V9lChoBmgJaA9DCIRGsHH96xfAlIaUUpRoFUsyaBZHQLVR9mXw9aF1fZQoaAZoCWgPQwhuv3yyYkgXwJSGlFKUaBVLMmgWR0C1Ur0TxoZidX2UKGgGaAloD0MITuyhfaygBsCUhpRSlGgVSzJoFkdAtVKff0mMO3V9lChoBmgJaA9DCK5FC9C2GhHAlIaUUpRoFUsyaBZHQLVSgV3ljmV1fZQoaAZoCWgPQwg25QrvcvEHwJSGlFKUaBVLMmgWR0C1UmKh+OOsdX2UKGgGaAloD0MIL/1LUpmSGcCUhpRSlGgVSzJoFkdAtVMpGQSzxHV9lChoBmgJaA9DCAUVVb/SGRXAlIaUUpRoFUsyaBZHQLVTC4vexfR1fZQoaAZoCWgPQwhgkV8/xBYcwJSGlFKUaBVLMmgWR0C1Uu1yeZogdX2UKGgGaAloD0MIFm2Oc5uQFMCUhpRSlGgVSzJoFkdAtVLOuyNXHXV9lChoBmgJaA9DCB8PfXcrCwvAlIaUUpRoFUsyaBZHQLVTuYP5HmR1fZQoaAZoCWgPQwjbb+1ESTgWwJSGlFKUaBVLMmgWR0C1U5wvpQk5dX2UKGgGaAloD0MIGHsvvmgPB8CUhpRSlGgVSzJoFkdAtVN+aZx7zHV9lChoBmgJaA9DCDuKc9TRAR/AlIaUUpRoFUsyaBZHQLVTX/wAlv91fZQoaAZoCWgPQwj6t8t+3ekVwJSGlFKUaBVLMmgWR0C1VGBacI7edX2UKGgGaAloD0MIgsXhzK+GFMCUhpRSlGgVSzJoFkdAtVRDDuSfUXV9lChoBmgJaA9DCFtfJLTlXBLAlIaUUpRoFUsyaBZHQLVUJTj/+851fZQoaAZoCWgPQwiaCBueXkkJwJSGlFKUaBVLMmgWR0C1VAbE5yU+dX2UKGgGaAloD0MIdO0L6IUrEcCUhpRSlGgVSzJoFkdAtVUNY+0PYnV9lChoBmgJaA9DCAMn28AduBLAlIaUUpRoFUsyaBZHQLVU8DCP6sR1fZQoaAZoCWgPQwjwGYnQCLYVwJSGlFKUaBVLMmgWR0C1VNJaePJadX2UKGgGaAloD0MIBFYOLbLtFMCUhpRSlGgVSzJoFkdAtVS0PkJa7nV9lChoBmgJaA9DCE4qGmt/FxjAlIaUUpRoFUsyaBZHQLVVw72criF1fZQoaAZoCWgPQwjdmQmGc+0awJSGlFKUaBVLMmgWR0C1VaZ/0/W2dX2UKGgGaAloD0MIRpc3h2vVBsCUhpRSlGgVSzJoFkdAtVWIuUUwjHV9lChoBmgJaA9DCJ7Swfo/JwjAlIaUUpRoFUsyaBZHQLVValANXo11fZQoaAZoCWgPQwjNOuP74nIIwJSGlFKUaBVLMmgWR0C1VnbtiQT3dX2UKGgGaAloD0MIorQ3+MJUEcCUhpRSlGgVSzJoFkdAtVZZuJk5InV9lChoBmgJaA9DCAvPS8XG7BLAlIaUUpRoFUsyaBZHQLVWO+uvECN1fZQoaAZoCWgPQwhV2uIan2kJwJSGlFKUaBVLMmgWR0C1Vh2CqZMMdX2UKGgGaAloD0MIflcE/1uJDsCUhpRSlGgVSzJoFkdAtVcno5ggHXV9lChoBmgJaA9DCGHe40wTxhLAlIaUUpRoFUsyaBZHQLVXCm6oVEd1fZQoaAZoCWgPQwioVImytwQVwJSGlFKUaBVLMmgWR0C1VuyMglnidX2UKGgGaAloD0MII59XPPU4GMCUhpRSlGgVSzJoFkdAtVbONGViWnV9lChoBmgJaA9DCCEDeXb5BhHAlIaUUpRoFUsyaBZHQLVXxzMA3kx1fZQoaAZoCWgPQwiWsgxxrFsVwJSGlFKUaBVLMmgWR0C1V6mu9vjwdX2UKGgGaAloD0MImWN5Vz3QGsCUhpRSlGgVSzJoFkdAtVeLmA9V3nV9lChoBmgJaA9DCPUSY5l+yQnAlIaUUpRoFUsyaBZHQLVXbP4mCy11fZQoaAZoCWgPQwjzWgndJREEwJSGlFKUaBVLMmgWR0C1WDnOv+wUdX2UKGgGaAloD0MIC0Pk9PV8A8CUhpRSlGgVSzJoFkdAtVgcO5J9RnV9lChoBmgJaA9DCNqQf2YQvxHAlIaUUpRoFUsyaBZHQLVX/iUxEfF1fZQoaAZoCWgPQwjKMy+H3bcLwJSGlFKUaBVLMmgWR0C1V99+1Bt2dX2UKGgGaAloD0MI2ZQrvMvFFMCUhpRSlGgVSzJoFkdAtVirLyMDOnV9lChoBmgJaA9DCKRxqN+F7RHAlIaUUpRoFUsyaBZHQLVYjaJhvzh1fZQoaAZoCWgPQwhhTzv8NVkNwJSGlFKUaBVLMmgWR0C1WG+LehwmdX2UKGgGaAloD0MIv7UTJSGhHcCUhpRSlGgVSzJoFkdAtVhQ2l2vCHV9lChoBmgJaA9DCNgubTgs/RDAlIaUUpRoFUsyaBZHQLVZG3BYV7B1fZQoaAZoCWgPQwhdFhObjzsewJSGlFKUaBVLMmgWR0C1WP3xe9i+dX2UKGgGaAloD0MIGTxM++Y+EMCUhpRSlGgVSzJoFkdAtVjf1VYISnV9lChoBmgJaA9DCJAty9dlOAbAlIaUUpRoFUsyaBZHQLVYwSWqtHR1fZQoaAZoCWgPQwjnU8cqpTcSwJSGlFKUaBVLMmgWR0C1WYgarFOxdX2UKGgGaAloD0MIUFQ2rKkMEsCUhpRSlGgVSzJoFkdAtVlqgg5imXV9lChoBmgJaA9DCDkNUYU/ExHAlIaUUpRoFUsyaBZHQLVZTGKhtch1fZQoaAZoCWgPQwh/3795cQIJwJSGlFKUaBVLMmgWR0C1WS2jj7yhdX2UKGgGaAloD0MIZCDPLt9aBcCUhpRSlGgVSzJoFkdAtVnyk1uR93V9lChoBmgJaA9DCFEtIorJ+wfAlIaUUpRoFUsyaBZHQLVZ1QPqcEx1fZQoaAZoCWgPQwh2bATidR0QwJSGlFKUaBVLMmgWR0C1Wbbl3hXKdX2UKGgGaAloD0MIsVOsGoS5FcCUhpRSlGgVSzJoFkdAtVmYK0D2anV9lChoBmgJaA9DCNDsurciMQXAlIaUUpRoFUsyaBZHQLVaXpJf6XV1fZQoaAZoCWgPQwhFhH8RNCYOwJSGlFKUaBVLMmgWR0C1WkEPYnOTdX2UKGgGaAloD0MIMZV+wtk9EsCUhpRSlGgVSzJoFkdAtVoi7EpAlnV9lChoBmgJaA9DCHk/br98ohPAlIaUUpRoFUsyaBZHQLVaBD6Fds11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 100000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -5.394903380423784, "std_reward": 1.7573878791649054, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-30T15:21:38.331500"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 3056
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3da44cb63b7f1027273b1da34714e688dfa07917db281456c542ce5e6a2f0ebb
|
3 |
size 3056
|