Upload 11 files
Browse files- adapter_config.json +28 -0
- adapter_model.safetensors +3 -0
- all_results.json +7 -0
- qwen.tiktoken +0 -0
- special_tokens_map.json +10 -0
- tokenization_qwen.py +276 -0
- tokenizer_config.json +17 -0
- train_results.json +7 -0
- trainer_log.jsonl +96 -0
- trainer_state.json +695 -0
- training_args.bin +3 -0
adapter_config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "Qwen/Qwen-7B-Chat",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 32,
|
14 |
+
"lora_dropout": 0.05,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 16,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"c_attn"
|
24 |
+
],
|
25 |
+
"task_type": "CAUSAL_LM",
|
26 |
+
"use_dora": false,
|
27 |
+
"use_rslora": false
|
28 |
+
}
|
adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8ccb0d95949741c36479d6bf4467bccf75c1ef0b0201a2bd35f030ff99504b58
|
3 |
+
size 33562824
|
all_results.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 5.0,
|
3 |
+
"train_loss": 0.886494568245396,
|
4 |
+
"train_runtime": 33369.3902,
|
5 |
+
"train_samples_per_second": 1.148,
|
6 |
+
"train_steps_per_second": 0.287
|
7 |
+
}
|
qwen.tiktoken
ADDED
The diff for this file is too large to render.
See raw diff
|
|
special_tokens_map.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"eos_token": {
|
3 |
+
"content": "<|im_end|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"pad_token": "<|im_end|>"
|
10 |
+
}
|
tokenization_qwen.py
ADDED
@@ -0,0 +1,276 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Alibaba Cloud.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
"""Tokenization classes for QWen."""
|
7 |
+
|
8 |
+
import base64
|
9 |
+
import logging
|
10 |
+
import os
|
11 |
+
import unicodedata
|
12 |
+
from typing import Collection, Dict, List, Set, Tuple, Union
|
13 |
+
|
14 |
+
import tiktoken
|
15 |
+
from transformers import PreTrainedTokenizer, AddedToken
|
16 |
+
|
17 |
+
logger = logging.getLogger(__name__)
|
18 |
+
|
19 |
+
|
20 |
+
VOCAB_FILES_NAMES = {"vocab_file": "qwen.tiktoken"}
|
21 |
+
|
22 |
+
PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
|
23 |
+
ENDOFTEXT = "<|endoftext|>"
|
24 |
+
IMSTART = "<|im_start|>"
|
25 |
+
IMEND = "<|im_end|>"
|
26 |
+
# as the default behavior is changed to allow special tokens in
|
27 |
+
# regular texts, the surface forms of special tokens need to be
|
28 |
+
# as different as possible to minimize the impact
|
29 |
+
EXTRAS = tuple((f"<|extra_{i}|>" for i in range(205)))
|
30 |
+
# changed to use actual index to avoid misconfiguration with vocabulary expansion
|
31 |
+
SPECIAL_START_ID = 151643
|
32 |
+
SPECIAL_TOKENS = tuple(
|
33 |
+
enumerate(
|
34 |
+
(
|
35 |
+
(
|
36 |
+
ENDOFTEXT,
|
37 |
+
IMSTART,
|
38 |
+
IMEND,
|
39 |
+
)
|
40 |
+
+ EXTRAS
|
41 |
+
),
|
42 |
+
start=SPECIAL_START_ID,
|
43 |
+
)
|
44 |
+
)
|
45 |
+
SPECIAL_TOKENS_SET = set(t for i, t in SPECIAL_TOKENS)
|
46 |
+
|
47 |
+
|
48 |
+
def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
|
49 |
+
with open(tiktoken_bpe_file, "rb") as f:
|
50 |
+
contents = f.read()
|
51 |
+
return {
|
52 |
+
base64.b64decode(token): int(rank)
|
53 |
+
for token, rank in (line.split() for line in contents.splitlines() if line)
|
54 |
+
}
|
55 |
+
|
56 |
+
|
57 |
+
class QWenTokenizer(PreTrainedTokenizer):
|
58 |
+
"""QWen tokenizer."""
|
59 |
+
|
60 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
61 |
+
|
62 |
+
def __init__(
|
63 |
+
self,
|
64 |
+
vocab_file,
|
65 |
+
errors="replace",
|
66 |
+
extra_vocab_file=None,
|
67 |
+
**kwargs,
|
68 |
+
):
|
69 |
+
super().__init__(**kwargs)
|
70 |
+
|
71 |
+
# how to handle errors in decoding UTF-8 byte sequences
|
72 |
+
# use ignore if you are in streaming inference
|
73 |
+
self.errors = errors
|
74 |
+
|
75 |
+
self.mergeable_ranks = _load_tiktoken_bpe(vocab_file) # type: Dict[bytes, int]
|
76 |
+
self.special_tokens = {
|
77 |
+
token: index
|
78 |
+
for index, token in SPECIAL_TOKENS
|
79 |
+
}
|
80 |
+
|
81 |
+
# try load extra vocab from file
|
82 |
+
if extra_vocab_file is not None:
|
83 |
+
used_ids = set(self.mergeable_ranks.values()) | set(self.special_tokens.values())
|
84 |
+
extra_mergeable_ranks = _load_tiktoken_bpe(extra_vocab_file)
|
85 |
+
for token, index in extra_mergeable_ranks.items():
|
86 |
+
if token in self.mergeable_ranks:
|
87 |
+
logger.info(f"extra token {token} exists, skipping")
|
88 |
+
continue
|
89 |
+
if index in used_ids:
|
90 |
+
logger.info(f'the index {index} for extra token {token} exists, skipping')
|
91 |
+
continue
|
92 |
+
self.mergeable_ranks[token] = index
|
93 |
+
# the index may be sparse after this, but don't worry tiktoken.Encoding will handle this
|
94 |
+
|
95 |
+
enc = tiktoken.Encoding(
|
96 |
+
"Qwen",
|
97 |
+
pat_str=PAT_STR,
|
98 |
+
mergeable_ranks=self.mergeable_ranks,
|
99 |
+
special_tokens=self.special_tokens,
|
100 |
+
)
|
101 |
+
assert (
|
102 |
+
len(self.mergeable_ranks) + len(self.special_tokens) == enc.n_vocab
|
103 |
+
), f"{len(self.mergeable_ranks) + len(self.special_tokens)} != {enc.n_vocab} in encoding"
|
104 |
+
|
105 |
+
self.decoder = {
|
106 |
+
v: k for k, v in self.mergeable_ranks.items()
|
107 |
+
} # type: dict[int, bytes|str]
|
108 |
+
self.decoder.update({v: k for k, v in self.special_tokens.items()})
|
109 |
+
|
110 |
+
self.tokenizer = enc # type: tiktoken.Encoding
|
111 |
+
|
112 |
+
self.eod_id = self.tokenizer.eot_token
|
113 |
+
self.im_start_id = self.special_tokens[IMSTART]
|
114 |
+
self.im_end_id = self.special_tokens[IMEND]
|
115 |
+
|
116 |
+
def __getstate__(self):
|
117 |
+
# for pickle lovers
|
118 |
+
state = self.__dict__.copy()
|
119 |
+
del state["tokenizer"]
|
120 |
+
return state
|
121 |
+
|
122 |
+
def __setstate__(self, state):
|
123 |
+
# tokenizer is not python native; don't pass it; rebuild it
|
124 |
+
self.__dict__.update(state)
|
125 |
+
enc = tiktoken.Encoding(
|
126 |
+
"Qwen",
|
127 |
+
pat_str=PAT_STR,
|
128 |
+
mergeable_ranks=self.mergeable_ranks,
|
129 |
+
special_tokens=self.special_tokens,
|
130 |
+
)
|
131 |
+
self.tokenizer = enc
|
132 |
+
|
133 |
+
def __len__(self) -> int:
|
134 |
+
return self.tokenizer.n_vocab
|
135 |
+
|
136 |
+
def get_vocab(self) -> Dict[bytes, int]:
|
137 |
+
return self.mergeable_ranks
|
138 |
+
|
139 |
+
def convert_tokens_to_ids(
|
140 |
+
self, tokens: Union[bytes, str, List[Union[bytes, str]]]
|
141 |
+
) -> List[int]:
|
142 |
+
ids = []
|
143 |
+
if isinstance(tokens, (str, bytes)):
|
144 |
+
if tokens in self.special_tokens:
|
145 |
+
return self.special_tokens[tokens]
|
146 |
+
else:
|
147 |
+
return self.mergeable_ranks.get(tokens)
|
148 |
+
for token in tokens:
|
149 |
+
if token in self.special_tokens:
|
150 |
+
ids.append(self.special_tokens[token])
|
151 |
+
else:
|
152 |
+
ids.append(self.mergeable_ranks.get(token))
|
153 |
+
return ids
|
154 |
+
|
155 |
+
def _add_tokens(
|
156 |
+
self,
|
157 |
+
new_tokens: Union[List[str], List[AddedToken]],
|
158 |
+
special_tokens: bool = False,
|
159 |
+
) -> int:
|
160 |
+
if not special_tokens and new_tokens:
|
161 |
+
raise ValueError("Adding regular tokens is not supported")
|
162 |
+
for token in new_tokens:
|
163 |
+
surface_form = token.content if isinstance(token, AddedToken) else token
|
164 |
+
if surface_form not in SPECIAL_TOKENS_SET:
|
165 |
+
raise ValueError("Adding unknown special tokens is not supported")
|
166 |
+
return 0
|
167 |
+
|
168 |
+
def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
|
169 |
+
"""
|
170 |
+
Save only the vocabulary of the tokenizer (vocabulary).
|
171 |
+
|
172 |
+
Returns:
|
173 |
+
`Tuple(str)`: Paths to the files saved.
|
174 |
+
"""
|
175 |
+
file_path = os.path.join(save_directory, "qwen.tiktoken")
|
176 |
+
with open(file_path, "w", encoding="utf8") as w:
|
177 |
+
for k, v in self.mergeable_ranks.items():
|
178 |
+
line = base64.b64encode(k).decode("utf8") + " " + str(v) + "\n"
|
179 |
+
w.write(line)
|
180 |
+
return (file_path,)
|
181 |
+
|
182 |
+
def tokenize(
|
183 |
+
self,
|
184 |
+
text: str,
|
185 |
+
allowed_special: Union[Set, str] = "all",
|
186 |
+
disallowed_special: Union[Collection, str] = (),
|
187 |
+
**kwargs,
|
188 |
+
) -> List[Union[bytes, str]]:
|
189 |
+
"""
|
190 |
+
Converts a string in a sequence of tokens.
|
191 |
+
|
192 |
+
Args:
|
193 |
+
text (`str`):
|
194 |
+
The sequence to be encoded.
|
195 |
+
allowed_special (`Literal["all"]` or `set`):
|
196 |
+
The surface forms of the tokens to be encoded as special tokens in regular texts.
|
197 |
+
Default to "all".
|
198 |
+
disallowed_special (`Literal["all"]` or `Collection`):
|
199 |
+
The surface forms of the tokens that should not be in regular texts and trigger errors.
|
200 |
+
Default to an empty tuple.
|
201 |
+
|
202 |
+
kwargs (additional keyword arguments, *optional*):
|
203 |
+
Will be passed to the underlying model specific encode method.
|
204 |
+
|
205 |
+
Returns:
|
206 |
+
`List[bytes|str]`: The list of tokens.
|
207 |
+
"""
|
208 |
+
tokens = []
|
209 |
+
text = unicodedata.normalize("NFC", text)
|
210 |
+
|
211 |
+
# this implementation takes a detour: text -> token id -> token surface forms
|
212 |
+
for t in self.tokenizer.encode(
|
213 |
+
text, allowed_special=allowed_special, disallowed_special=disallowed_special
|
214 |
+
):
|
215 |
+
tokens.append(self.decoder[t])
|
216 |
+
return tokens
|
217 |
+
|
218 |
+
def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
|
219 |
+
"""
|
220 |
+
Converts a sequence of tokens in a single string.
|
221 |
+
"""
|
222 |
+
text = ""
|
223 |
+
temp = b""
|
224 |
+
for t in tokens:
|
225 |
+
if isinstance(t, str):
|
226 |
+
if temp:
|
227 |
+
text += temp.decode("utf-8", errors=self.errors)
|
228 |
+
temp = b""
|
229 |
+
text += t
|
230 |
+
elif isinstance(t, bytes):
|
231 |
+
temp += t
|
232 |
+
else:
|
233 |
+
raise TypeError("token should only be of type types or str")
|
234 |
+
if temp:
|
235 |
+
text += temp.decode("utf-8", errors=self.errors)
|
236 |
+
return text
|
237 |
+
|
238 |
+
@property
|
239 |
+
def vocab_size(self):
|
240 |
+
return self.tokenizer.n_vocab
|
241 |
+
|
242 |
+
def _convert_id_to_token(self, index: int) -> Union[bytes, str]:
|
243 |
+
"""Converts an id to a token, special tokens included"""
|
244 |
+
if index in self.decoder:
|
245 |
+
return self.decoder[index]
|
246 |
+
raise ValueError("unknown ids")
|
247 |
+
|
248 |
+
def _convert_token_to_id(self, token: Union[bytes, str]) -> int:
|
249 |
+
"""Converts a token to an id using the vocab, special tokens included"""
|
250 |
+
if token in self.special_tokens:
|
251 |
+
return self.special_tokens[token]
|
252 |
+
if token in self.mergeable_ranks:
|
253 |
+
return self.mergeable_ranks[token]
|
254 |
+
raise ValueError("unknown token")
|
255 |
+
|
256 |
+
def _tokenize(self, text: str, **kwargs):
|
257 |
+
"""
|
258 |
+
Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
|
259 |
+
vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
|
260 |
+
|
261 |
+
Do NOT take care of added tokens.
|
262 |
+
"""
|
263 |
+
raise NotImplementedError
|
264 |
+
|
265 |
+
def _decode(
|
266 |
+
self,
|
267 |
+
token_ids: Union[int, List[int]],
|
268 |
+
skip_special_tokens: bool = False,
|
269 |
+
errors: str = None,
|
270 |
+
**kwargs,
|
271 |
+
) -> str:
|
272 |
+
if isinstance(token_ids, int):
|
273 |
+
token_ids = [token_ids]
|
274 |
+
if skip_special_tokens:
|
275 |
+
token_ids = [i for i in token_ids if i < self.eod_id]
|
276 |
+
return self.tokenizer.decode(token_ids, errors=errors or self.errors)
|
tokenizer_config.json
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {},
|
3 |
+
"auto_map": {
|
4 |
+
"AutoTokenizer": [
|
5 |
+
"tokenization_qwen.QWenTokenizer",
|
6 |
+
null
|
7 |
+
]
|
8 |
+
},
|
9 |
+
"chat_template": "{% set system_message = 'You are a helpful assistant.' %}{% if messages[0]['role'] == 'system' %}{% set system_message = messages[0]['content'] %}{% endif %}{% if system_message is defined %}{{ '<|im_start|>system\\n' + system_message + '<|im_end|>\\n' }}{% endif %}{% for message in messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<|im_start|>user\\n' + content + '<|im_end|>\\n<|im_start|>assistant\\n' }}{% elif message['role'] == 'assistant' %}{{ content + '<|im_end|>' + '\\n' }}{% endif %}{% endfor %}",
|
10 |
+
"clean_up_tokenization_spaces": true,
|
11 |
+
"eos_token": "<|im_end|>",
|
12 |
+
"model_max_length": 32768,
|
13 |
+
"pad_token": "<|im_end|>",
|
14 |
+
"padding_side": "right",
|
15 |
+
"split_special_tokens": false,
|
16 |
+
"tokenizer_class": "QWenTokenizer"
|
17 |
+
}
|
train_results.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 5.0,
|
3 |
+
"train_loss": 0.886494568245396,
|
4 |
+
"train_runtime": 33369.3902,
|
5 |
+
"train_samples_per_second": 1.148,
|
6 |
+
"train_steps_per_second": 0.287
|
7 |
+
}
|
trainer_log.jsonl
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{"current_steps": 100, "total_steps": 9580, "loss": 1.8222, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 0.00019994623498004714, "epoch": 0.05, "percentage": 1.04, "elapsed_time": "0:05:45", "remaining_time": "9:05:27"}
|
2 |
+
{"current_steps": 200, "total_steps": 9580, "loss": 1.8565, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 0.00019978499773373596, "epoch": 0.1, "percentage": 2.09, "elapsed_time": "0:11:32", "remaining_time": "9:01:24"}
|
3 |
+
{"current_steps": 300, "total_steps": 9580, "loss": 1.7994, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 0.00019951646163954176, "epoch": 0.16, "percentage": 3.13, "elapsed_time": "0:17:22", "remaining_time": "8:57:18"}
|
4 |
+
{"current_steps": 400, "total_steps": 9580, "loss": 1.6984, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 0.0001991409154544338, "epoch": 0.21, "percentage": 4.18, "elapsed_time": "0:23:03", "remaining_time": "8:49:00"}
|
5 |
+
{"current_steps": 500, "total_steps": 9580, "loss": 1.6973, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 0.00019865876300337478, "epoch": 0.26, "percentage": 5.22, "elapsed_time": "0:28:50", "remaining_time": "8:43:38"}
|
6 |
+
{"current_steps": 600, "total_steps": 9580, "loss": 1.7661, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 0.00019807052274508773, "epoch": 0.31, "percentage": 6.26, "elapsed_time": "0:34:35", "remaining_time": "8:37:45"}
|
7 |
+
{"current_steps": 700, "total_steps": 9580, "loss": 1.6948, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 0.00019737682721455714, "epoch": 0.37, "percentage": 7.31, "elapsed_time": "0:40:22", "remaining_time": "8:32:05"}
|
8 |
+
{"current_steps": 800, "total_steps": 9580, "loss": 1.8664, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 0.0001965784223428638, "epoch": 0.42, "percentage": 8.35, "elapsed_time": "0:46:07", "remaining_time": "8:26:11"}
|
9 |
+
{"current_steps": 900, "total_steps": 9580, "loss": 1.7087, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 0.00019567616665508485, "epoch": 0.47, "percentage": 9.39, "elapsed_time": "0:51:54", "remaining_time": "8:20:35"}
|
10 |
+
{"current_steps": 1000, "total_steps": 9580, "loss": 1.6826, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 0.0001946710303471214, "epoch": 0.52, "percentage": 10.44, "elapsed_time": "0:57:38", "remaining_time": "8:14:34"}
|
11 |
+
{"current_steps": 1100, "total_steps": 9580, "loss": 1.5399, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 0.00019356409424244655, "epoch": 0.57, "percentage": 11.48, "elapsed_time": "1:03:33", "remaining_time": "8:09:55"}
|
12 |
+
{"current_steps": 1200, "total_steps": 9580, "loss": 1.6394, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 0.00019235654862989537, "epoch": 0.63, "percentage": 12.53, "elapsed_time": "1:09:19", "remaining_time": "8:04:10"}
|
13 |
+
{"current_steps": 1300, "total_steps": 9580, "loss": 1.645, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 0.00019104969198374688, "epoch": 0.68, "percentage": 13.57, "elapsed_time": "1:15:06", "remaining_time": "7:58:25"}
|
14 |
+
{"current_steps": 1400, "total_steps": 9580, "loss": 1.5853, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 0.00018964492956747425, "epoch": 0.73, "percentage": 14.61, "elapsed_time": "1:20:53", "remaining_time": "7:52:37"}
|
15 |
+
{"current_steps": 1500, "total_steps": 9580, "loss": 1.5778, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 0.00018814377192266423, "epoch": 0.78, "percentage": 15.66, "elapsed_time": "1:26:39", "remaining_time": "7:46:48"}
|
16 |
+
{"current_steps": 1600, "total_steps": 9580, "loss": 1.6368, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 0.00018654783324473137, "epoch": 0.84, "percentage": 16.7, "elapsed_time": "1:32:22", "remaining_time": "7:40:40"}
|
17 |
+
{"current_steps": 1700, "total_steps": 9580, "loss": 1.6269, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 0.00018487617447307124, "epoch": 0.89, "percentage": 17.75, "elapsed_time": "1:38:04", "remaining_time": "7:34:38"}
|
18 |
+
{"current_steps": 1800, "total_steps": 9580, "loss": 1.7073, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 0.00018309682531549338, "epoch": 0.94, "percentage": 18.79, "elapsed_time": "1:43:50", "remaining_time": "7:28:50"}
|
19 |
+
{"current_steps": 1900, "total_steps": 9580, "loss": 1.5544, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 0.00018122812210849337, "epoch": 0.99, "percentage": 19.83, "elapsed_time": "1:49:36", "remaining_time": "7:23:02"}
|
20 |
+
{"current_steps": 2000, "total_steps": 9580, "loss": 1.3285, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 0.00017927207426937544, "epoch": 1.04, "percentage": 20.88, "elapsed_time": "1:55:21", "remaining_time": "7:17:13"}
|
21 |
+
{"current_steps": 2100, "total_steps": 9580, "loss": 1.2529, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 0.00017723078513716157, "epoch": 1.1, "percentage": 21.92, "elapsed_time": "2:01:14", "remaining_time": "7:11:51"}
|
22 |
+
{"current_steps": 2200, "total_steps": 9580, "loss": 1.3708, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 0.00017510644971087015, "epoch": 1.15, "percentage": 22.96, "elapsed_time": "2:07:00", "remaining_time": "7:06:04"}
|
23 |
+
{"current_steps": 2300, "total_steps": 9580, "loss": 1.3309, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 0.0001729013522892329, "epoch": 1.2, "percentage": 24.01, "elapsed_time": "2:12:47", "remaining_time": "7:00:17"}
|
24 |
+
{"current_steps": 2400, "total_steps": 9580, "loss": 1.4201, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 0.0001706178640143872, "epoch": 1.25, "percentage": 25.05, "elapsed_time": "2:18:33", "remaining_time": "6:54:30"}
|
25 |
+
{"current_steps": 2500, "total_steps": 9580, "loss": 1.2956, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 0.00016825844032218625, "epoch": 1.3, "percentage": 26.1, "elapsed_time": "2:24:20", "remaining_time": "6:48:46"}
|
26 |
+
{"current_steps": 2600, "total_steps": 9580, "loss": 1.3375, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 0.00016582561830186785, "epoch": 1.36, "percentage": 27.14, "elapsed_time": "2:30:11", "remaining_time": "6:43:13"}
|
27 |
+
{"current_steps": 2700, "total_steps": 9580, "loss": 1.2897, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 0.00016332201396792123, "epoch": 1.41, "percentage": 28.18, "elapsed_time": "2:35:57", "remaining_time": "6:37:24"}
|
28 |
+
{"current_steps": 2800, "total_steps": 9580, "loss": 1.3323, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 0.00016075031944708584, "epoch": 1.46, "percentage": 29.23, "elapsed_time": "2:41:43", "remaining_time": "6:31:36"}
|
29 |
+
{"current_steps": 2900, "total_steps": 9580, "loss": 1.2841, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 0.0001581133000835061, "epoch": 1.51, "percentage": 30.27, "elapsed_time": "2:47:30", "remaining_time": "6:25:50"}
|
30 |
+
{"current_steps": 3000, "total_steps": 9580, "loss": 1.2666, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 0.00015541379146515603, "epoch": 1.57, "percentage": 31.32, "elapsed_time": "2:53:19", "remaining_time": "6:20:09"}
|
31 |
+
{"current_steps": 3100, "total_steps": 9580, "loss": 1.2336, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 0.0001526546963747302, "epoch": 1.62, "percentage": 32.36, "elapsed_time": "2:59:09", "remaining_time": "6:14:30"}
|
32 |
+
{"current_steps": 3200, "total_steps": 9580, "loss": 1.2627, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 0.00014986740918973633, "epoch": 1.67, "percentage": 33.4, "elapsed_time": "3:04:55", "remaining_time": "6:08:42"}
|
33 |
+
{"current_steps": 3300, "total_steps": 9580, "loss": 1.2683, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 0.00014699862334591993, "epoch": 1.72, "percentage": 34.45, "elapsed_time": "3:10:38", "remaining_time": "6:02:48"}
|
34 |
+
{"current_steps": 3400, "total_steps": 9580, "loss": 1.3076, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 0.00014407929986366458, "epoch": 1.77, "percentage": 35.49, "elapsed_time": "3:16:26", "remaining_time": "5:57:03"}
|
35 |
+
{"current_steps": 3500, "total_steps": 9580, "loss": 1.3296, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 0.0001411125778926756, "epoch": 1.83, "percentage": 36.53, "elapsed_time": "3:22:09", "remaining_time": "5:51:11"}
|
36 |
+
{"current_steps": 3600, "total_steps": 9580, "loss": 1.2321, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 0.0001381016475502724, "epoch": 1.88, "percentage": 37.58, "elapsed_time": "3:27:54", "remaining_time": "5:45:22"}
|
37 |
+
{"current_steps": 3700, "total_steps": 9580, "loss": 1.1754, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 0.00013504974649105364, "epoch": 1.93, "percentage": 38.62, "elapsed_time": "3:33:44", "remaining_time": "5:39:39"}
|
38 |
+
{"current_steps": 3800, "total_steps": 9580, "loss": 1.2665, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 0.0001319601564254462, "epoch": 1.98, "percentage": 39.67, "elapsed_time": "3:39:26", "remaining_time": "5:33:46"}
|
39 |
+
{"current_steps": 3900, "total_steps": 9580, "loss": 1.0379, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 0.00012883619959088054, "epoch": 2.04, "percentage": 40.71, "elapsed_time": "3:45:13", "remaining_time": "5:28:00"}
|
40 |
+
{"current_steps": 4000, "total_steps": 9580, "loss": 0.8172, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 0.0001256812351793875, "epoch": 2.09, "percentage": 41.75, "elapsed_time": "3:50:58", "remaining_time": "5:22:13"}
|
41 |
+
{"current_steps": 4100, "total_steps": 9580, "loss": 0.8519, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 0.0001224986557254578, "epoch": 2.14, "percentage": 42.8, "elapsed_time": "3:56:48", "remaining_time": "5:16:31"}
|
42 |
+
{"current_steps": 4200, "total_steps": 9580, "loss": 0.8636, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 0.00011929188345804825, "epoch": 2.19, "percentage": 43.84, "elapsed_time": "4:02:42", "remaining_time": "5:10:53"}
|
43 |
+
{"current_steps": 4300, "total_steps": 9580, "loss": 0.8727, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 0.00011606436662065767, "epoch": 2.24, "percentage": 44.89, "elapsed_time": "4:08:31", "remaining_time": "5:05:09"}
|
44 |
+
{"current_steps": 4400, "total_steps": 9580, "loss": 0.8618, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 0.00011281957576342934, "epoch": 2.3, "percentage": 45.93, "elapsed_time": "4:14:18", "remaining_time": "4:59:23"}
|
45 |
+
{"current_steps": 4500, "total_steps": 9580, "loss": 0.7976, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 0.00010956100001126682, "epoch": 2.35, "percentage": 46.97, "elapsed_time": "4:20:10", "remaining_time": "4:53:42"}
|
46 |
+
{"current_steps": 4600, "total_steps": 9580, "loss": 0.7871, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 0.00010629214331197683, "epoch": 2.4, "percentage": 48.02, "elapsed_time": "4:26:02", "remaining_time": "4:48:00"}
|
47 |
+
{"current_steps": 4700, "total_steps": 9580, "loss": 0.8557, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 0.00010301652066847249, "epoch": 2.45, "percentage": 49.06, "elapsed_time": "4:31:52", "remaining_time": "4:42:16"}
|
48 |
+
{"current_steps": 4800, "total_steps": 9580, "loss": 0.8898, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 9.973765435908962e-05, "epoch": 2.51, "percentage": 50.1, "elapsed_time": "4:37:40", "remaining_time": "4:36:30"}
|
49 |
+
{"current_steps": 4900, "total_steps": 9580, "loss": 0.8269, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 9.64590701500791e-05, "epoch": 2.56, "percentage": 51.15, "elapsed_time": "4:43:31", "remaining_time": "4:30:47"}
|
50 |
+
{"current_steps": 5000, "total_steps": 9580, "loss": 0.7502, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 9.318429350434922e-05, "epoch": 2.61, "percentage": 52.19, "elapsed_time": "4:49:18", "remaining_time": "4:25:00"}
|
51 |
+
{"current_steps": 5100, "total_steps": 9580, "loss": 0.8201, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 8.991684579053403e-05, "epoch": 2.66, "percentage": 53.24, "elapsed_time": "4:55:12", "remaining_time": "4:19:18"}
|
52 |
+
{"current_steps": 5200, "total_steps": 9580, "loss": 0.8618, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 8.666024049646397e-05, "epoch": 2.71, "percentage": 54.28, "elapsed_time": "5:00:57", "remaining_time": "4:13:30"}
|
53 |
+
{"current_steps": 5300, "total_steps": 9580, "loss": 0.8255, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 8.341797945111142e-05, "epoch": 2.77, "percentage": 55.32, "elapsed_time": "5:06:44", "remaining_time": "4:07:42"}
|
54 |
+
{"current_steps": 5400, "total_steps": 9580, "loss": 0.759, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 8.019354905907224e-05, "epoch": 2.82, "percentage": 56.37, "elapsed_time": "5:12:31", "remaining_time": "4:01:55"}
|
55 |
+
{"current_steps": 5500, "total_steps": 9580, "loss": 0.8287, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 7.699041655163378e-05, "epoch": 2.87, "percentage": 57.41, "elapsed_time": "5:18:21", "remaining_time": "3:56:09"}
|
56 |
+
{"current_steps": 5600, "total_steps": 9580, "loss": 0.8356, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 7.381202625845948e-05, "epoch": 2.92, "percentage": 58.46, "elapsed_time": "5:24:03", "remaining_time": "3:50:18"}
|
57 |
+
{"current_steps": 5700, "total_steps": 9580, "loss": 0.9181, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 7.066179590389994e-05, "epoch": 2.97, "percentage": 59.5, "elapsed_time": "5:29:47", "remaining_time": "3:44:29"}
|
58 |
+
{"current_steps": 5800, "total_steps": 9580, "loss": 0.5811, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 6.754311293191257e-05, "epoch": 3.03, "percentage": 60.54, "elapsed_time": "5:35:33", "remaining_time": "3:38:41"}
|
59 |
+
{"current_steps": 5900, "total_steps": 9580, "loss": 0.4604, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 6.44593308635417e-05, "epoch": 3.08, "percentage": 61.59, "elapsed_time": "5:41:22", "remaining_time": "3:32:55"}
|
60 |
+
{"current_steps": 6000, "total_steps": 9580, "loss": 0.412, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 6.1413765690876e-05, "epoch": 3.13, "percentage": 62.63, "elapsed_time": "5:47:10", "remaining_time": "3:27:08"}
|
61 |
+
{"current_steps": 6100, "total_steps": 9580, "loss": 0.4478, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.840969231136102e-05, "epoch": 3.18, "percentage": 63.67, "elapsed_time": "5:53:05", "remaining_time": "3:21:26"}
|
62 |
+
{"current_steps": 6200, "total_steps": 9580, "loss": 0.3905, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.5450341006300535e-05, "epoch": 3.24, "percentage": 64.72, "elapsed_time": "5:58:53", "remaining_time": "3:15:39"}
|
63 |
+
{"current_steps": 6300, "total_steps": 9580, "loss": 0.401, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.2538893967333866e-05, "epoch": 3.29, "percentage": 65.76, "elapsed_time": "6:04:41", "remaining_time": "3:09:52"}
|
64 |
+
{"current_steps": 6400, "total_steps": 9580, "loss": 0.417, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.9678481874623836e-05, "epoch": 3.34, "percentage": 66.81, "elapsed_time": "6:10:36", "remaining_time": "3:04:08"}
|
65 |
+
{"current_steps": 6500, "total_steps": 9580, "loss": 0.4213, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.687218053043516e-05, "epoch": 3.39, "percentage": 67.85, "elapsed_time": "6:16:27", "remaining_time": "2:58:22"}
|
66 |
+
{"current_steps": 6600, "total_steps": 9580, "loss": 0.4371, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.412300755172314e-05, "epoch": 3.44, "percentage": 68.89, "elapsed_time": "6:22:19", "remaining_time": "2:52:37"}
|
67 |
+
{"current_steps": 6700, "total_steps": 9580, "loss": 0.4686, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.1433919125288914e-05, "epoch": 3.5, "percentage": 69.94, "elapsed_time": "6:28:07", "remaining_time": "2:46:50"}
|
68 |
+
{"current_steps": 6800, "total_steps": 9580, "loss": 0.4017, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.8807806828990455e-05, "epoch": 3.55, "percentage": 70.98, "elapsed_time": "6:33:56", "remaining_time": "2:41:03"}
|
69 |
+
{"current_steps": 6900, "total_steps": 9580, "loss": 0.4227, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.624749452242799e-05, "epoch": 3.6, "percentage": 72.03, "elapsed_time": "6:39:45", "remaining_time": "2:35:16"}
|
70 |
+
{"current_steps": 7000, "total_steps": 9580, "loss": 0.4035, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.375573531044645e-05, "epoch": 3.65, "percentage": 73.07, "elapsed_time": "6:45:34", "remaining_time": "2:29:28"}
|
71 |
+
{"current_steps": 7100, "total_steps": 9580, "loss": 0.4271, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.1335208582720856e-05, "epoch": 3.71, "percentage": 74.11, "elapsed_time": "6:51:27", "remaining_time": "2:23:43"}
|
72 |
+
{"current_steps": 7200, "total_steps": 9580, "loss": 0.4546, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.8988517132607428e-05, "epoch": 3.76, "percentage": 75.16, "elapsed_time": "6:57:16", "remaining_time": "2:17:56"}
|
73 |
+
{"current_steps": 7300, "total_steps": 9580, "loss": 0.3988, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.6718184358358956e-05, "epoch": 3.81, "percentage": 76.2, "elapsed_time": "7:03:10", "remaining_time": "2:12:10"}
|
74 |
+
{"current_steps": 7400, "total_steps": 9580, "loss": 0.3839, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.4526651549713608e-05, "epoch": 3.86, "percentage": 77.24, "elapsed_time": "7:09:06", "remaining_time": "2:06:24"}
|
75 |
+
{"current_steps": 7500, "total_steps": 9580, "loss": 0.3956, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.2436969776075456e-05, "epoch": 3.91, "percentage": 78.29, "elapsed_time": "7:14:52", "remaining_time": "2:00:36"}
|
76 |
+
{"current_steps": 7600, "total_steps": 9580, "loss": 0.4, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.040917410080746e-05, "epoch": 3.97, "percentage": 79.33, "elapsed_time": "7:20:45", "remaining_time": "1:54:49"}
|
77 |
+
{"current_steps": 7700, "total_steps": 9580, "loss": 0.3287, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.8466962472390136e-05, "epoch": 4.02, "percentage": 80.38, "elapsed_time": "7:26:32", "remaining_time": "1:49:01"}
|
78 |
+
{"current_steps": 7800, "total_steps": 9580, "loss": 0.2069, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.661242335176261e-05, "epoch": 4.07, "percentage": 81.42, "elapsed_time": "7:32:22", "remaining_time": "1:43:13"}
|
79 |
+
{"current_steps": 7900, "total_steps": 9580, "loss": 0.1645, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.4847550925581377e-05, "epoch": 4.12, "percentage": 82.46, "elapsed_time": "7:38:07", "remaining_time": "1:37:25"}
|
80 |
+
{"current_steps": 8000, "total_steps": 9580, "loss": 0.1888, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.3174242961870542e-05, "epoch": 4.18, "percentage": 83.51, "elapsed_time": "7:44:02", "remaining_time": "1:31:38"}
|
81 |
+
{"current_steps": 8100, "total_steps": 9580, "loss": 0.1644, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.1594298769351286e-05, "epoch": 4.23, "percentage": 84.55, "elapsed_time": "7:49:54", "remaining_time": "1:25:51"}
|
82 |
+
{"current_steps": 8200, "total_steps": 9580, "loss": 0.2169, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.0109417262644261e-05, "epoch": 4.28, "percentage": 85.59, "elapsed_time": "7:55:43", "remaining_time": "1:20:03"}
|
83 |
+
{"current_steps": 8300, "total_steps": 9580, "loss": 0.1992, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 8.72119513542623e-06, "epoch": 4.33, "percentage": 86.64, "elapsed_time": "8:01:31", "remaining_time": "1:14:15"}
|
84 |
+
{"current_steps": 8400, "total_steps": 9580, "loss": 0.2011, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 7.431125143504525e-06, "epoch": 4.38, "percentage": 87.68, "elapsed_time": "8:07:19", "remaining_time": "1:08:27"}
|
85 |
+
{"current_steps": 8500, "total_steps": 9580, "loss": 0.1783, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 6.240594499656316e-06, "epoch": 4.44, "percentage": 88.73, "elapsed_time": "8:13:07", "remaining_time": "1:02:39"}
|
86 |
+
{"current_steps": 8600, "total_steps": 9580, "loss": 0.1813, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.150883381957983e-06, "epoch": 4.49, "percentage": 89.77, "elapsed_time": "8:18:54", "remaining_time": "0:56:51"}
|
87 |
+
{"current_steps": 8700, "total_steps": 9580, "loss": 0.2027, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.1631635572092706e-06, "epoch": 4.54, "percentage": 90.81, "elapsed_time": "8:24:39", "remaining_time": "0:51:02"}
|
88 |
+
{"current_steps": 8800, "total_steps": 9580, "loss": 0.216, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.2784971209318673e-06, "epoch": 4.59, "percentage": 91.86, "elapsed_time": "8:30:38", "remaining_time": "0:45:15"}
|
89 |
+
{"current_steps": 8900, "total_steps": 9580, "loss": 0.202, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.4978353552977398e-06, "epoch": 4.65, "percentage": 92.9, "elapsed_time": "8:36:28", "remaining_time": "0:39:27"}
|
90 |
+
{"current_steps": 9000, "total_steps": 9580, "loss": 0.1762, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.822017706215029e-06, "epoch": 4.7, "percentage": 93.95, "elapsed_time": "8:42:21", "remaining_time": "0:33:39"}
|
91 |
+
{"current_steps": 9100, "total_steps": 9580, "loss": 0.217, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.2517708806714657e-06, "epoch": 4.75, "percentage": 94.99, "elapsed_time": "8:48:12", "remaining_time": "0:27:51"}
|
92 |
+
{"current_steps": 9200, "total_steps": 9580, "loss": 0.2045, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 7.877080653061031e-07, "epoch": 4.8, "percentage": 96.03, "elapsed_time": "8:54:06", "remaining_time": "0:22:03"}
|
93 |
+
{"current_steps": 9300, "total_steps": 9580, "loss": 0.2263, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.303282670495068e-07, "epoch": 4.85, "percentage": 97.08, "elapsed_time": "8:59:54", "remaining_time": "0:16:15"}
|
94 |
+
{"current_steps": 9400, "total_steps": 9580, "loss": 0.192, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.800157765413535e-07, "epoch": 4.91, "percentage": 98.12, "elapsed_time": "9:05:44", "remaining_time": "0:10:27"}
|
95 |
+
{"current_steps": 9500, "total_steps": 9580, "loss": 0.2436, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.703975490257916e-08, "epoch": 4.96, "percentage": 99.16, "elapsed_time": "9:11:33", "remaining_time": "0:04:38"}
|
96 |
+
{"current_steps": 9580, "total_steps": 9580, "loss": null, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 5.0, "percentage": 100.0, "elapsed_time": "9:16:09", "remaining_time": "0:00:00"}
|
trainer_state.json
ADDED
@@ -0,0 +1,695 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 5.0,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 9580,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.05,
|
13 |
+
"grad_norm": 1.0843530893325806,
|
14 |
+
"learning_rate": 0.00019994623498004714,
|
15 |
+
"loss": 1.8222,
|
16 |
+
"step": 100
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.1,
|
20 |
+
"grad_norm": 0.9015785455703735,
|
21 |
+
"learning_rate": 0.00019978499773373596,
|
22 |
+
"loss": 1.8565,
|
23 |
+
"step": 200
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.16,
|
27 |
+
"grad_norm": 1.2422339916229248,
|
28 |
+
"learning_rate": 0.00019951646163954176,
|
29 |
+
"loss": 1.7994,
|
30 |
+
"step": 300
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.21,
|
34 |
+
"grad_norm": 1.0499353408813477,
|
35 |
+
"learning_rate": 0.0001991409154544338,
|
36 |
+
"loss": 1.6984,
|
37 |
+
"step": 400
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.26,
|
41 |
+
"grad_norm": 1.122926950454712,
|
42 |
+
"learning_rate": 0.00019865876300337478,
|
43 |
+
"loss": 1.6973,
|
44 |
+
"step": 500
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.31,
|
48 |
+
"grad_norm": 1.3406814336776733,
|
49 |
+
"learning_rate": 0.00019807052274508773,
|
50 |
+
"loss": 1.7661,
|
51 |
+
"step": 600
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.37,
|
55 |
+
"grad_norm": 0.7354043126106262,
|
56 |
+
"learning_rate": 0.00019737682721455714,
|
57 |
+
"loss": 1.6948,
|
58 |
+
"step": 700
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.42,
|
62 |
+
"grad_norm": 2.118002414703369,
|
63 |
+
"learning_rate": 0.0001965784223428638,
|
64 |
+
"loss": 1.8664,
|
65 |
+
"step": 800
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.47,
|
69 |
+
"grad_norm": 1.6859912872314453,
|
70 |
+
"learning_rate": 0.00019567616665508485,
|
71 |
+
"loss": 1.7087,
|
72 |
+
"step": 900
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.52,
|
76 |
+
"grad_norm": 1.2144606113433838,
|
77 |
+
"learning_rate": 0.0001946710303471214,
|
78 |
+
"loss": 1.6826,
|
79 |
+
"step": 1000
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.57,
|
83 |
+
"grad_norm": 1.680190920829773,
|
84 |
+
"learning_rate": 0.00019356409424244655,
|
85 |
+
"loss": 1.5399,
|
86 |
+
"step": 1100
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.63,
|
90 |
+
"grad_norm": 1.834701418876648,
|
91 |
+
"learning_rate": 0.00019235654862989537,
|
92 |
+
"loss": 1.6394,
|
93 |
+
"step": 1200
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.68,
|
97 |
+
"grad_norm": 1.9838495254516602,
|
98 |
+
"learning_rate": 0.00019104969198374688,
|
99 |
+
"loss": 1.645,
|
100 |
+
"step": 1300
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.73,
|
104 |
+
"grad_norm": 2.141674280166626,
|
105 |
+
"learning_rate": 0.00018964492956747425,
|
106 |
+
"loss": 1.5853,
|
107 |
+
"step": 1400
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.78,
|
111 |
+
"grad_norm": 2.6233127117156982,
|
112 |
+
"learning_rate": 0.00018814377192266423,
|
113 |
+
"loss": 1.5778,
|
114 |
+
"step": 1500
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.84,
|
118 |
+
"grad_norm": 1.6887329816818237,
|
119 |
+
"learning_rate": 0.00018654783324473137,
|
120 |
+
"loss": 1.6368,
|
121 |
+
"step": 1600
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.89,
|
125 |
+
"grad_norm": 3.113426446914673,
|
126 |
+
"learning_rate": 0.00018487617447307124,
|
127 |
+
"loss": 1.6269,
|
128 |
+
"step": 1700
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.94,
|
132 |
+
"grad_norm": 2.1365339756011963,
|
133 |
+
"learning_rate": 0.00018309682531549338,
|
134 |
+
"loss": 1.7073,
|
135 |
+
"step": 1800
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.99,
|
139 |
+
"grad_norm": 2.3787343502044678,
|
140 |
+
"learning_rate": 0.00018122812210849337,
|
141 |
+
"loss": 1.5544,
|
142 |
+
"step": 1900
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 1.04,
|
146 |
+
"grad_norm": 2.1635191440582275,
|
147 |
+
"learning_rate": 0.00017927207426937544,
|
148 |
+
"loss": 1.3285,
|
149 |
+
"step": 2000
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 1.1,
|
153 |
+
"grad_norm": 2.331688642501831,
|
154 |
+
"learning_rate": 0.00017723078513716157,
|
155 |
+
"loss": 1.2529,
|
156 |
+
"step": 2100
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 1.15,
|
160 |
+
"grad_norm": 5.185802936553955,
|
161 |
+
"learning_rate": 0.00017510644971087015,
|
162 |
+
"loss": 1.3708,
|
163 |
+
"step": 2200
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 1.2,
|
167 |
+
"grad_norm": 3.1339027881622314,
|
168 |
+
"learning_rate": 0.0001729013522892329,
|
169 |
+
"loss": 1.3309,
|
170 |
+
"step": 2300
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 1.25,
|
174 |
+
"grad_norm": 3.4236795902252197,
|
175 |
+
"learning_rate": 0.0001706178640143872,
|
176 |
+
"loss": 1.4201,
|
177 |
+
"step": 2400
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 1.3,
|
181 |
+
"grad_norm": 3.849432945251465,
|
182 |
+
"learning_rate": 0.00016825844032218625,
|
183 |
+
"loss": 1.2956,
|
184 |
+
"step": 2500
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 1.36,
|
188 |
+
"grad_norm": 3.8217601776123047,
|
189 |
+
"learning_rate": 0.00016582561830186785,
|
190 |
+
"loss": 1.3375,
|
191 |
+
"step": 2600
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 1.41,
|
195 |
+
"grad_norm": 1.5418843030929565,
|
196 |
+
"learning_rate": 0.00016332201396792123,
|
197 |
+
"loss": 1.2897,
|
198 |
+
"step": 2700
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 1.46,
|
202 |
+
"grad_norm": 2.2709996700286865,
|
203 |
+
"learning_rate": 0.00016075031944708584,
|
204 |
+
"loss": 1.3323,
|
205 |
+
"step": 2800
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 1.51,
|
209 |
+
"grad_norm": 4.869096279144287,
|
210 |
+
"learning_rate": 0.0001581133000835061,
|
211 |
+
"loss": 1.2841,
|
212 |
+
"step": 2900
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 1.57,
|
216 |
+
"grad_norm": 3.3247766494750977,
|
217 |
+
"learning_rate": 0.00015541379146515603,
|
218 |
+
"loss": 1.2666,
|
219 |
+
"step": 3000
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 1.62,
|
223 |
+
"grad_norm": 4.0471110343933105,
|
224 |
+
"learning_rate": 0.0001526546963747302,
|
225 |
+
"loss": 1.2336,
|
226 |
+
"step": 3100
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 1.67,
|
230 |
+
"grad_norm": 2.8835229873657227,
|
231 |
+
"learning_rate": 0.00014986740918973633,
|
232 |
+
"loss": 1.2627,
|
233 |
+
"step": 3200
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 1.72,
|
237 |
+
"grad_norm": 4.162999629974365,
|
238 |
+
"learning_rate": 0.00014699862334591993,
|
239 |
+
"loss": 1.2683,
|
240 |
+
"step": 3300
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 1.77,
|
244 |
+
"grad_norm": 2.161064624786377,
|
245 |
+
"learning_rate": 0.00014407929986366458,
|
246 |
+
"loss": 1.3076,
|
247 |
+
"step": 3400
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 1.83,
|
251 |
+
"grad_norm": 2.2110209465026855,
|
252 |
+
"learning_rate": 0.0001411125778926756,
|
253 |
+
"loss": 1.3296,
|
254 |
+
"step": 3500
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 1.88,
|
258 |
+
"grad_norm": 3.9512176513671875,
|
259 |
+
"learning_rate": 0.0001381016475502724,
|
260 |
+
"loss": 1.2321,
|
261 |
+
"step": 3600
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 1.93,
|
265 |
+
"grad_norm": 1.0244474411010742,
|
266 |
+
"learning_rate": 0.00013504974649105364,
|
267 |
+
"loss": 1.1754,
|
268 |
+
"step": 3700
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 1.98,
|
272 |
+
"grad_norm": 4.0455217361450195,
|
273 |
+
"learning_rate": 0.0001319601564254462,
|
274 |
+
"loss": 1.2665,
|
275 |
+
"step": 3800
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 2.04,
|
279 |
+
"grad_norm": 4.162383556365967,
|
280 |
+
"learning_rate": 0.00012883619959088054,
|
281 |
+
"loss": 1.0379,
|
282 |
+
"step": 3900
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 2.09,
|
286 |
+
"grad_norm": 2.3285574913024902,
|
287 |
+
"learning_rate": 0.0001256812351793875,
|
288 |
+
"loss": 0.8172,
|
289 |
+
"step": 4000
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 2.14,
|
293 |
+
"grad_norm": 5.439870834350586,
|
294 |
+
"learning_rate": 0.0001224986557254578,
|
295 |
+
"loss": 0.8519,
|
296 |
+
"step": 4100
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 2.19,
|
300 |
+
"grad_norm": 2.932978391647339,
|
301 |
+
"learning_rate": 0.00011929188345804825,
|
302 |
+
"loss": 0.8636,
|
303 |
+
"step": 4200
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 2.24,
|
307 |
+
"grad_norm": 5.512314319610596,
|
308 |
+
"learning_rate": 0.00011606436662065767,
|
309 |
+
"loss": 0.8727,
|
310 |
+
"step": 4300
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 2.3,
|
314 |
+
"grad_norm": 4.129833698272705,
|
315 |
+
"learning_rate": 0.00011281957576342934,
|
316 |
+
"loss": 0.8618,
|
317 |
+
"step": 4400
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 2.35,
|
321 |
+
"grad_norm": 2.5295193195343018,
|
322 |
+
"learning_rate": 0.00010956100001126682,
|
323 |
+
"loss": 0.7976,
|
324 |
+
"step": 4500
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 2.4,
|
328 |
+
"grad_norm": 4.148761749267578,
|
329 |
+
"learning_rate": 0.00010629214331197683,
|
330 |
+
"loss": 0.7871,
|
331 |
+
"step": 4600
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 2.45,
|
335 |
+
"grad_norm": 5.00084924697876,
|
336 |
+
"learning_rate": 0.00010301652066847249,
|
337 |
+
"loss": 0.8557,
|
338 |
+
"step": 4700
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 2.51,
|
342 |
+
"grad_norm": 5.721644878387451,
|
343 |
+
"learning_rate": 9.973765435908962e-05,
|
344 |
+
"loss": 0.8898,
|
345 |
+
"step": 4800
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 2.56,
|
349 |
+
"grad_norm": 5.872501850128174,
|
350 |
+
"learning_rate": 9.64590701500791e-05,
|
351 |
+
"loss": 0.8269,
|
352 |
+
"step": 4900
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 2.61,
|
356 |
+
"grad_norm": 5.41200065612793,
|
357 |
+
"learning_rate": 9.318429350434922e-05,
|
358 |
+
"loss": 0.7502,
|
359 |
+
"step": 5000
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 2.66,
|
363 |
+
"grad_norm": 3.3696563243865967,
|
364 |
+
"learning_rate": 8.991684579053403e-05,
|
365 |
+
"loss": 0.8201,
|
366 |
+
"step": 5100
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 2.71,
|
370 |
+
"grad_norm": 3.6817996501922607,
|
371 |
+
"learning_rate": 8.666024049646397e-05,
|
372 |
+
"loss": 0.8618,
|
373 |
+
"step": 5200
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 2.77,
|
377 |
+
"grad_norm": 4.630326747894287,
|
378 |
+
"learning_rate": 8.341797945111142e-05,
|
379 |
+
"loss": 0.8255,
|
380 |
+
"step": 5300
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 2.82,
|
384 |
+
"grad_norm": 2.672938823699951,
|
385 |
+
"learning_rate": 8.019354905907224e-05,
|
386 |
+
"loss": 0.759,
|
387 |
+
"step": 5400
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 2.87,
|
391 |
+
"grad_norm": 3.0967512130737305,
|
392 |
+
"learning_rate": 7.699041655163378e-05,
|
393 |
+
"loss": 0.8287,
|
394 |
+
"step": 5500
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 2.92,
|
398 |
+
"grad_norm": 4.052151679992676,
|
399 |
+
"learning_rate": 7.381202625845948e-05,
|
400 |
+
"loss": 0.8356,
|
401 |
+
"step": 5600
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 2.97,
|
405 |
+
"grad_norm": 3.5286691188812256,
|
406 |
+
"learning_rate": 7.066179590389994e-05,
|
407 |
+
"loss": 0.9181,
|
408 |
+
"step": 5700
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 3.03,
|
412 |
+
"grad_norm": 4.84535026550293,
|
413 |
+
"learning_rate": 6.754311293191257e-05,
|
414 |
+
"loss": 0.5811,
|
415 |
+
"step": 5800
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 3.08,
|
419 |
+
"grad_norm": 2.9033737182617188,
|
420 |
+
"learning_rate": 6.44593308635417e-05,
|
421 |
+
"loss": 0.4604,
|
422 |
+
"step": 5900
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 3.13,
|
426 |
+
"grad_norm": 1.6759638786315918,
|
427 |
+
"learning_rate": 6.1413765690876e-05,
|
428 |
+
"loss": 0.412,
|
429 |
+
"step": 6000
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 3.18,
|
433 |
+
"grad_norm": 3.905642032623291,
|
434 |
+
"learning_rate": 5.840969231136102e-05,
|
435 |
+
"loss": 0.4478,
|
436 |
+
"step": 6100
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 3.24,
|
440 |
+
"grad_norm": 7.030938148498535,
|
441 |
+
"learning_rate": 5.5450341006300535e-05,
|
442 |
+
"loss": 0.3905,
|
443 |
+
"step": 6200
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 3.29,
|
447 |
+
"grad_norm": 5.1767988204956055,
|
448 |
+
"learning_rate": 5.2538893967333866e-05,
|
449 |
+
"loss": 0.401,
|
450 |
+
"step": 6300
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 3.34,
|
454 |
+
"grad_norm": 2.0529091358184814,
|
455 |
+
"learning_rate": 4.9678481874623836e-05,
|
456 |
+
"loss": 0.417,
|
457 |
+
"step": 6400
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 3.39,
|
461 |
+
"grad_norm": 4.730635643005371,
|
462 |
+
"learning_rate": 4.687218053043516e-05,
|
463 |
+
"loss": 0.4213,
|
464 |
+
"step": 6500
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 3.44,
|
468 |
+
"grad_norm": 5.270570278167725,
|
469 |
+
"learning_rate": 4.412300755172314e-05,
|
470 |
+
"loss": 0.4371,
|
471 |
+
"step": 6600
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 3.5,
|
475 |
+
"grad_norm": 5.049856185913086,
|
476 |
+
"learning_rate": 4.1433919125288914e-05,
|
477 |
+
"loss": 0.4686,
|
478 |
+
"step": 6700
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 3.55,
|
482 |
+
"grad_norm": 5.543980121612549,
|
483 |
+
"learning_rate": 3.8807806828990455e-05,
|
484 |
+
"loss": 0.4017,
|
485 |
+
"step": 6800
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 3.6,
|
489 |
+
"grad_norm": 5.048495292663574,
|
490 |
+
"learning_rate": 3.624749452242799e-05,
|
491 |
+
"loss": 0.4227,
|
492 |
+
"step": 6900
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"epoch": 3.65,
|
496 |
+
"grad_norm": 6.684240818023682,
|
497 |
+
"learning_rate": 3.375573531044645e-05,
|
498 |
+
"loss": 0.4035,
|
499 |
+
"step": 7000
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 3.71,
|
503 |
+
"grad_norm": 6.066633701324463,
|
504 |
+
"learning_rate": 3.1335208582720856e-05,
|
505 |
+
"loss": 0.4271,
|
506 |
+
"step": 7100
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 3.76,
|
510 |
+
"grad_norm": 4.037696361541748,
|
511 |
+
"learning_rate": 2.8988517132607428e-05,
|
512 |
+
"loss": 0.4546,
|
513 |
+
"step": 7200
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 3.81,
|
517 |
+
"grad_norm": 4.5075602531433105,
|
518 |
+
"learning_rate": 2.6718184358358956e-05,
|
519 |
+
"loss": 0.3988,
|
520 |
+
"step": 7300
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 3.86,
|
524 |
+
"grad_norm": 2.9646005630493164,
|
525 |
+
"learning_rate": 2.4526651549713608e-05,
|
526 |
+
"loss": 0.3839,
|
527 |
+
"step": 7400
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 3.91,
|
531 |
+
"grad_norm": 6.707378387451172,
|
532 |
+
"learning_rate": 2.2436969776075456e-05,
|
533 |
+
"loss": 0.3956,
|
534 |
+
"step": 7500
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 3.97,
|
538 |
+
"grad_norm": 6.770478248596191,
|
539 |
+
"learning_rate": 2.040917410080746e-05,
|
540 |
+
"loss": 0.4,
|
541 |
+
"step": 7600
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 4.02,
|
545 |
+
"grad_norm": 3.7659125328063965,
|
546 |
+
"learning_rate": 1.8466962472390136e-05,
|
547 |
+
"loss": 0.3287,
|
548 |
+
"step": 7700
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 4.07,
|
552 |
+
"grad_norm": 2.905404567718506,
|
553 |
+
"learning_rate": 1.661242335176261e-05,
|
554 |
+
"loss": 0.2069,
|
555 |
+
"step": 7800
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 4.12,
|
559 |
+
"grad_norm": 5.363249778747559,
|
560 |
+
"learning_rate": 1.4847550925581377e-05,
|
561 |
+
"loss": 0.1645,
|
562 |
+
"step": 7900
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 4.18,
|
566 |
+
"grad_norm": 5.363257884979248,
|
567 |
+
"learning_rate": 1.3174242961870542e-05,
|
568 |
+
"loss": 0.1888,
|
569 |
+
"step": 8000
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 4.23,
|
573 |
+
"grad_norm": 2.431536912918091,
|
574 |
+
"learning_rate": 1.1594298769351286e-05,
|
575 |
+
"loss": 0.1644,
|
576 |
+
"step": 8100
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 4.28,
|
580 |
+
"grad_norm": 2.4400837421417236,
|
581 |
+
"learning_rate": 1.0109417262644261e-05,
|
582 |
+
"loss": 0.2169,
|
583 |
+
"step": 8200
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 4.33,
|
587 |
+
"grad_norm": 8.288840293884277,
|
588 |
+
"learning_rate": 8.72119513542623e-06,
|
589 |
+
"loss": 0.1992,
|
590 |
+
"step": 8300
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 4.38,
|
594 |
+
"grad_norm": 3.36771297454834,
|
595 |
+
"learning_rate": 7.431125143504525e-06,
|
596 |
+
"loss": 0.2011,
|
597 |
+
"step": 8400
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 4.44,
|
601 |
+
"grad_norm": 0.056750617921352386,
|
602 |
+
"learning_rate": 6.240594499656316e-06,
|
603 |
+
"loss": 0.1783,
|
604 |
+
"step": 8500
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"epoch": 4.49,
|
608 |
+
"grad_norm": 4.8992743492126465,
|
609 |
+
"learning_rate": 5.150883381957983e-06,
|
610 |
+
"loss": 0.1813,
|
611 |
+
"step": 8600
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 4.54,
|
615 |
+
"grad_norm": 2.5150370597839355,
|
616 |
+
"learning_rate": 4.1631635572092706e-06,
|
617 |
+
"loss": 0.2027,
|
618 |
+
"step": 8700
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"epoch": 4.59,
|
622 |
+
"grad_norm": 4.545584201812744,
|
623 |
+
"learning_rate": 3.2784971209318673e-06,
|
624 |
+
"loss": 0.216,
|
625 |
+
"step": 8800
|
626 |
+
},
|
627 |
+
{
|
628 |
+
"epoch": 4.65,
|
629 |
+
"grad_norm": 6.020129680633545,
|
630 |
+
"learning_rate": 2.4978353552977398e-06,
|
631 |
+
"loss": 0.202,
|
632 |
+
"step": 8900
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 4.7,
|
636 |
+
"grad_norm": 5.093991279602051,
|
637 |
+
"learning_rate": 1.822017706215029e-06,
|
638 |
+
"loss": 0.1762,
|
639 |
+
"step": 9000
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 4.75,
|
643 |
+
"grad_norm": 2.0878984928131104,
|
644 |
+
"learning_rate": 1.2517708806714657e-06,
|
645 |
+
"loss": 0.217,
|
646 |
+
"step": 9100
|
647 |
+
},
|
648 |
+
{
|
649 |
+
"epoch": 4.8,
|
650 |
+
"grad_norm": 2.145759105682373,
|
651 |
+
"learning_rate": 7.877080653061031e-07,
|
652 |
+
"loss": 0.2045,
|
653 |
+
"step": 9200
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 4.85,
|
657 |
+
"grad_norm": 8.151817321777344,
|
658 |
+
"learning_rate": 4.303282670495068e-07,
|
659 |
+
"loss": 0.2263,
|
660 |
+
"step": 9300
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"epoch": 4.91,
|
664 |
+
"grad_norm": 6.520354270935059,
|
665 |
+
"learning_rate": 1.800157765413535e-07,
|
666 |
+
"loss": 0.192,
|
667 |
+
"step": 9400
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 4.96,
|
671 |
+
"grad_norm": 7.271907806396484,
|
672 |
+
"learning_rate": 3.703975490257916e-08,
|
673 |
+
"loss": 0.2436,
|
674 |
+
"step": 9500
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 5.0,
|
678 |
+
"step": 9580,
|
679 |
+
"total_flos": 1.5336527740560998e+18,
|
680 |
+
"train_loss": 0.886494568245396,
|
681 |
+
"train_runtime": 33369.3902,
|
682 |
+
"train_samples_per_second": 1.148,
|
683 |
+
"train_steps_per_second": 0.287
|
684 |
+
}
|
685 |
+
],
|
686 |
+
"logging_steps": 100,
|
687 |
+
"max_steps": 9580,
|
688 |
+
"num_input_tokens_seen": 0,
|
689 |
+
"num_train_epochs": 5,
|
690 |
+
"save_steps": 1000,
|
691 |
+
"total_flos": 1.5336527740560998e+18,
|
692 |
+
"train_batch_size": 4,
|
693 |
+
"trial_name": null,
|
694 |
+
"trial_params": null
|
695 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:347246aece17461af2bf7ca00e633da815261b88a5734925bcb6f918b0b7dd08
|
3 |
+
size 5048
|