|
import os |
|
|
|
import numpy as np |
|
import torch |
|
import torchvision |
|
from PIL import Image |
|
from pytorch_lightning.callbacks import Callback |
|
from pytorch_lightning.utilities.distributed import rank_zero_only |
|
|
|
|
|
class ImageLogger(Callback): |
|
def __init__(self, batch_frequency=2000, max_images=4, clamp=True, increase_log_steps=True, |
|
rescale=True, disabled=False, log_on_batch_idx=False, log_first_step=False, |
|
log_images_kwargs=None): |
|
super().__init__() |
|
self.rescale = rescale |
|
self.batch_freq = batch_frequency |
|
self.max_images = max_images |
|
if not increase_log_steps: |
|
self.log_steps = [self.batch_freq] |
|
self.clamp = clamp |
|
self.disabled = disabled |
|
self.log_on_batch_idx = log_on_batch_idx |
|
self.log_images_kwargs = log_images_kwargs if log_images_kwargs else {} |
|
self.log_first_step = log_first_step |
|
|
|
@rank_zero_only |
|
def log_local(self, save_dir, split, images, global_step, current_epoch, batch_idx): |
|
root = os.path.join(save_dir, "image_log", split) |
|
for k in images: |
|
grid = torchvision.utils.make_grid(images[k], nrow=4) |
|
if self.rescale: |
|
grid = (grid + 1.0) / 2.0 |
|
grid = grid.transpose(0, 1).transpose(1, 2).squeeze(-1) |
|
grid = grid.numpy() |
|
grid = (grid * 255).astype(np.uint8) |
|
filename = "{}_gs-{:06}_e-{:06}_b-{:06}.png".format(k, global_step, current_epoch, batch_idx) |
|
path = os.path.join(root, filename) |
|
os.makedirs(os.path.split(path)[0], exist_ok=True) |
|
Image.fromarray(grid).save(path) |
|
|
|
def log_img(self, pl_module, batch, batch_idx, split="train"): |
|
check_idx = batch_idx |
|
if (self.check_frequency(check_idx) and |
|
hasattr(pl_module, "log_images") and |
|
callable(pl_module.log_images) and |
|
self.max_images > 0): |
|
logger = type(pl_module.logger) |
|
|
|
is_train = pl_module.training |
|
if is_train: |
|
pl_module.eval() |
|
|
|
with torch.no_grad(): |
|
images = pl_module.log_images(batch, split=split, **self.log_images_kwargs) |
|
|
|
for k in images: |
|
N = min(images[k].shape[0], self.max_images) |
|
images[k] = images[k][:N] |
|
if isinstance(images[k], torch.Tensor): |
|
images[k] = images[k].detach().cpu() |
|
if self.clamp: |
|
images[k] = torch.clamp(images[k], -1., 1.) |
|
|
|
self.log_local(pl_module.logger.save_dir, split, images, |
|
pl_module.global_step, pl_module.current_epoch, batch_idx) |
|
|
|
if is_train: |
|
pl_module.train() |
|
|
|
def check_frequency(self, check_idx): |
|
return check_idx % self.batch_freq == 0 |
|
|
|
def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx): |
|
if not self.disabled: |
|
self.log_img(pl_module, batch, batch_idx, split="train") |
|
|