georgao commited on
Commit
4ee8f3e
1 Parent(s): afb85f1

LunarLander-v2 by PPO

Browse files
LunarLanderPPO.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db1f96e4a0f1b29851f846f550602d8176127e35d804fa191bef8c9ca85760e8
3
+ size 147303
LunarLanderPPO/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
LunarLanderPPO/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f381b3ab940>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f381b3ab9d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f381b3aba60>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f381b3abaf0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f381b3abb80>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f381b3abc10>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f381b3abca0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f381b3abd30>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f381b3abdc0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f381b3abe50>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f381b3abee0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f381b3abf70>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f381b3a5c60>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1507328,
47
+ "_total_timesteps": 1500000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1677755068692305722,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJoH2ryR3a8/NaA1vkX/l76+iwi86rMUvAAAAAAAAAAAAMAhurYxsj/8nxe9UUTcvlDQKDt94jg9AAAAAAAAAADg7DE+HA1svJ5xpbq3HGk5rF7TvdMHADoAAIA/AACAP+33Kz5IZIC8clB6uu2CRTkifAC+29jxOQAAgD8AAIA/DaoAPlxfFTs0soy+zJ8ZvjhL/bxi1S4/AACAPwAAAABNC5U+l1lkP5utcj6xUSi//LUnPx3NabsAAAAAAAAAABo7y72eCIk9xonyPcYEW74SfhG96hpuPAAAAAAAAAAAcwIBPmTNqz1wSZu+eUCovmTWlb0oTs68AAAAAAAAAACmgiW+Kk1dP9ukPL5bdyS/U1eAvjUHt70AAAAAAAAAAGbywTv5bSA/3pNXPBvqIL/f9b87VVg3vQAAAAAAAAAAs/USPmlGdbyCqA06feaGPL1F5L2OAVk9AACAPwAAgD/mSV+9w5Fhuna5J7PD4GuwZ2OSu2t6yTMAAIA/AACAP9qjJj625De89cQuO0X8Hbl5R5m9y/pZugAAgD8AAIA/JsKZvXKfvj/O4DW/YeppPq2onTyBcga+AAAAAAAAAACmz/c9AzIJvEezI73Dzt07bR0wPf0KGbwAAIA/AACAPyZs0z1c9ya6+m9etlUzrK/Rs9a7KnCGNQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.004885333333333408,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVJhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMICft2EpHLb0CUhpRSlIwBbJRL0IwBdJRHQKFzKeIVM251fZQoaAZoCWgPQwjcnbXbLl1xQJSGlFKUaBVL5WgWR0Chc3MWGh24dX2UKGgGaAloD0MIqdvZV17RcECUhpRSlGgVTdMBaBZHQKFzk801qFh1fZQoaAZoCWgPQwgnT1lNlx1zQJSGlFKUaBVL/2gWR0Chc50/wAlwdX2UKGgGaAloD0MI2ZlC5zUdcECUhpRSlGgVS79oFkdAoXQFuLrHEXV9lChoBmgJaA9DCH0fDhKipmZAlIaUUpRoFU3oA2gWR0ChdM18Ti84dX2UKGgGaAloD0MIYMrAAS1DcECUhpRSlGgVS6FoFkdAoXTTpA2Q4nV9lChoBmgJaA9DCISDvYlhcXFAlIaUUpRoFUvJaBZHQKF0/d5Y5kt1fZQoaAZoCWgPQwhN9zqpb1dyQJSGlFKUaBVLymgWR0ChdR/SH/LldX2UKGgGaAloD0MIRiQKLauncUCUhpRSlGgVS6xoFkdAoXUft+kP+XV9lChoBmgJaA9DCMMOY9LfQHJAlIaUUpRoFUvlaBZHQKF1OcNpdrx1fZQoaAZoCWgPQwgotRfR9uJjQJSGlFKUaBVN6ANoFkdAoXVLgbZOBXV9lChoBmgJaA9DCN7n+Gix4nJAlIaUUpRoFUu4aBZHQKF16wKSgXd1fZQoaAZoCWgPQwiKkSVzLO9yQJSGlFKUaBVL7GgWR0ChdfAfuCwsdX2UKGgGaAloD0MILpJ2o4+6ckCUhpRSlGgVS9VoFkdAoXZiWX1J2HV9lChoBmgJaA9DCG+gwDs5E3BAlIaUUpRoFUuoaBZHQKF2eBXjlxR1fZQoaAZoCWgPQwh9WdqpOdFxQJSGlFKUaBVLuGgWR0ChdrQI+nqFdX2UKGgGaAloD0MICW8PQkChcECUhpRSlGgVS7ZoFkdAoXh7we/5+HV9lChoBmgJaA9DCKu0xTU+lG5AlIaUUpRoFUvAaBZHQKF4jcmBvrJ1fZQoaAZoCWgPQwjaG3xhslhyQJSGlFKUaBVLzWgWR0CheKVJ+UhWdX2UKGgGaAloD0MIuqC+Zc7ickCUhpRSlGgVS8toFkdAoXjyIDYAbXV9lChoBmgJaA9DCF+bjZXYCHFAlIaUUpRoFUvYaBZHQKF5Zc6/7BR1fZQoaAZoCWgPQwiLwcO0b7lxQJSGlFKUaBVL9WgWR0CheYbwSamXdX2UKGgGaAloD0MIQInPnSCPc0CUhpRSlGgVS+loFkdAoXnZMN+b3HV9lChoBmgJaA9DCKcDWU8tG3FAlIaUUpRoFUvCaBZHQKF52jFhodx1fZQoaAZoCWgPQwj0TZoGBclxQJSGlFKUaBVLnmgWR0Chegh+nZTRdX2UKGgGaAloD0MIpaKx9jdcckCUhpRSlGgVS7RoFkdAoXocYwZflnV9lChoBmgJaA9DCFNZFHbRNXFAlIaUUpRoFUvQaBZHQKF6JqL0jC51fZQoaAZoCWgPQwjvU1VoYCRyQJSGlFKUaBVLuWgWR0Chek4plSTAdX2UKGgGaAloD0MIiV3b2+1qcUCUhpRSlGgVS6JoFkdAoXvfJDE3sHV9lChoBmgJaA9DCDChgsPLoXBAlIaUUpRoFUupaBZHQKF8ESVW0Z51fZQoaAZoCWgPQwh4YWu2Mk9zQJSGlFKUaBVLu2gWR0ChfF71RLsbdX2UKGgGaAloD0MIisvxCkQNckCUhpRSlGgVS5hoFkdAoXxrM/yGz3V9lChoBmgJaA9DCO7qVWR0h29AlIaUUpRoFUuhaBZHQKF8dYI0IkZ1fZQoaAZoCWgPQwiQ2sTJfa1yQJSGlFKUaBVLwWgWR0ChfKKsEJSjdX2UKGgGaAloD0MIaAWGrO5lYUCUhpRSlGgVTegDaBZHQKF82BnSOR11fZQoaAZoCWgPQwgzF7g8FmZwQJSGlFKUaBVLqGgWR0ChfRktNBWxdX2UKGgGaAloD0MIwyy0c1pDckCUhpRSlGgVS7xoFkdAoX0ss+V1OnV9lChoBmgJaA9DCIYdxqT/c3JAlIaUUpRoFUvLaBZHQKF9PcafjCJ1fZQoaAZoCWgPQwjKbJBJhhtxQJSGlFKUaBVLxGgWR0ChfVPnjhkzdX2UKGgGaAloD0MIT3Yzo5/YcUCUhpRSlGgVTU8CaBZHQKF9ihufmLd1fZQoaAZoCWgPQwgEcR5OoEdyQJSGlFKUaBVL2WgWR0ChfY7p/wy7dX2UKGgGaAloD0MIuYswRfmlckCUhpRSlGgVS+doFkdAoX2QE0SAY3V9lChoBmgJaA9DCMf2WtB7yG9AlIaUUpRoFUukaBZHQKF+VbSJCSl1fZQoaAZoCWgPQwh1j2yuWjxwQJSGlFKUaBVLxWgWR0Chfnj+irT6dX2UKGgGaAloD0MIuTZUjDOPcECUhpRSlGgVS+toFkdAoX7T1PFefXV9lChoBmgJaA9DCN2XM9sVAnNAlIaUUpRoFUvJaBZHQKF+2Wa+evp1fZQoaAZoCWgPQwi2n4zxYbNxQJSGlFKUaBVLyGgWR0Chft/grH2idX2UKGgGaAloD0MITU7tDFMgbkCUhpRSlGgVS75oFkdAoX7rNbC79XV9lChoBmgJaA9DCLbykv9JM3JAlIaUUpRoFUuwaBZHQKF+8h37k4p1fZQoaAZoCWgPQwiDonkAC4JyQJSGlFKUaBVLwGgWR0Chf3DNQj2SdX2UKGgGaAloD0MIMLyS5PmscECUhpRSlGgVS7RoFkdAoX91Gus90XV9lChoBmgJaA9DCPj578Fro3FAlIaUUpRoFUvTaBZHQKF/lgjQiRp1fZQoaAZoCWgPQwg5twn3Sj9yQJSGlFKUaBVLsWgWR0Chf6EY4yXVdX2UKGgGaAloD0MIUyCzs+gRc0CUhpRSlGgVS7doFkdAoX+2cJ+lTHV9lChoBmgJaA9DCKRUwhM6SHJAlIaUUpRoFUvXaBZHQKF/xJCjUNN1fZQoaAZoCWgPQwg10lJ5+5dyQJSGlFKUaBVLxmgWR0Chf+F/QSi/dX2UKGgGaAloD0MINZawNkZWc0CUhpRSlGgVS8BoFkdAoYC/pY9xInV9lChoBmgJaA9DCPsCeuHOVnJAlIaUUpRoFUunaBZHQKGAywt8NQV1fZQoaAZoCWgPQwjK+s3EtMNwQJSGlFKUaBVL1WgWR0ChgW6Pjn3ddX2UKGgGaAloD0MIaM76lCMpcUCUhpRSlGgVS6ZoFkdAoYGEcbR4QnV9lChoBmgJaA9DCBjuXBhpn3FAlIaUUpRoFUvcaBZHQKGBm9Gqgh91fZQoaAZoCWgPQwhuaqD53OpyQJSGlFKUaBVL7GgWR0ChgeA0CRwIdX2UKGgGaAloD0MIAyZw6+7UcECUhpRSlGgVS8loFkdAoYH8uctoSXV9lChoBmgJaA9DCCk8aHadCHJAlIaUUpRoFUulaBZHQKGCCHjZL7J1fZQoaAZoCWgPQwjnjCjtTXVyQJSGlFKUaBVNAgFoFkdAoYIV7ngYQHV9lChoBmgJaA9DCOY9zjThV3NAlIaUUpRoFUvLaBZHQKGCaQkHD791fZQoaAZoCWgPQwj/snvysOxwQJSGlFKUaBVL12gWR0ChgmmgSOBEdX2UKGgGaAloD0MIY7Mj1TcXcUCUhpRSlGgVS+doFkdAoYKTKDCgsnV9lChoBmgJaA9DCA9/TdYoEWVAlIaUUpRoFU3oA2gWR0ChguyRSxZ/dX2UKGgGaAloD0MIOugSDn3dckCUhpRSlGgVS8hoFkdAoYN5giNbT3V9lChoBmgJaA9DCNeGinF+N2FAlIaUUpRoFU3oA2gWR0Chg4JZW7vodX2UKGgGaAloD0MImPc40wTJcUCUhpRSlGgVS9FoFkdAoYOjDMvAXXV9lChoBmgJaA9DCA/SU+SQT29AlIaUUpRoFUu6aBZHQKGEFZ/0/W11fZQoaAZoCWgPQwixNsZO+HZuQJSGlFKUaBVLn2gWR0ChhBWQGOdYdX2UKGgGaAloD0MIIlM+BFUVcECUhpRSlGgVS7loFkdAoYR1QGfPHHV9lChoBmgJaA9DCH8UdeYefHJAlIaUUpRoFUvmaBZHQKGEe/xDst11fZQoaAZoCWgPQwi77UJznTRvQJSGlFKUaBVLzGgWR0ChhIwTmGM5dX2UKGgGaAloD0MIDmWoium6ckCUhpRSlGgVS+1oFkdAoYSjtkWhy3V9lChoBmgJaA9DCAjNrnsrVXBAlIaUUpRoFUu5aBZHQKGEx9If8uV1fZQoaAZoCWgPQwhv10tTROFxQJSGlFKUaBVLt2gWR0ChhOUutfXxdX2UKGgGaAloD0MIPUfku1TtckCUhpRSlGgVTQIBaBZHQKGFrntfG+91fZQoaAZoCWgPQwiEgHwJFXBxQJSGlFKUaBVL5WgWR0Chhcm+9Jz1dX2UKGgGaAloD0MId/S/XAt9ckCUhpRSlGgVS8poFkdAoYX55NXYDnV9lChoBmgJaA9DCKCkwAKYm3JAlIaUUpRoFUvWaBZHQKGGKGA08/51fZQoaAZoCWgPQwiWPnRBPbBxQJSGlFKUaBVLrWgWR0Chhj8XvYvndX2UKGgGaAloD0MIbsST3UzkcUCUhpRSlGgVS9doFkdAoYZOjZcs2HV9lChoBmgJaA9DCHO9babCw3BAlIaUUpRoFUu4aBZHQKGGYesgdOt1fZQoaAZoCWgPQwiyZI7lnVxwQJSGlFKUaBVLtWgWR0Chhr4sNDtxdX2UKGgGaAloD0MIjpWYZ6Ubb0CUhpRSlGgVS8NoFkdAoYbmlwcYInV9lChoBmgJaA9DCG2P3nAfInFAlIaUUpRoFUu6aBZHQKGG+pFTeft1fZQoaAZoCWgPQwgn3Cvz1uluQJSGlFKUaBVLsGgWR0ChhwKKYRdydX2UKGgGaAloD0MI2hznNqEWcUCUhpRSlGgVS8ZoFkdAoYdkSmIj4nV9lChoBmgJaA9DCF8Lem/M9nBAlIaUUpRoFUvmaBZHQKGHavQnhKl1fZQoaAZoCWgPQwj2s1iKJDlyQJSGlFKUaBVL3GgWR0ChiILi2lVMdX2UKGgGaAloD0MICi/BqY9MckCUhpRSlGgVS61oFkdAoYiIL/jsEHV9lChoBmgJaA9DCGajc36Kx3JAlIaUUpRoFUvXaBZHQKGIjwLmZE51fZQoaAZoCWgPQwglCFdA4fNwQJSGlFKUaBVL12gWR0ChiRA3DNyHdX2UKGgGaAloD0MIZePBFjvkcECUhpRSlGgVS/BoFkdAoYkgdOqNqHV9lChoBmgJaA9DCKzlzkxwI3JAlIaUUpRoFUvZaBZHQKGJPktEofF1ZS4="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 460,
80
+ "n_steps": 2048,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
LunarLanderPPO/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:748fb1ceb98148ebd806bf94d412e7eb20a36fb8d9eec90e0166b7d3acc34f5e
3
+ size 87929
LunarLanderPPO/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:564ccea5551a196258384a2a06dc1a865acf211b0514107126cc10df617d57b2
3
+ size 43393
LunarLanderPPO/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
LunarLanderPPO/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 245.32 +/- 52.75
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f381b3ab940>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f381b3ab9d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f381b3aba60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f381b3abaf0>", "_build": "<function ActorCriticPolicy._build at 0x7f381b3abb80>", "forward": "<function ActorCriticPolicy.forward at 0x7f381b3abc10>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f381b3abca0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f381b3abd30>", "_predict": "<function ActorCriticPolicy._predict at 0x7f381b3abdc0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f381b3abe50>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f381b3abee0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f381b3abf70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f381b3a5c60>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1507328, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677755068692305722, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJoH2ryR3a8/NaA1vkX/l76+iwi86rMUvAAAAAAAAAAAAMAhurYxsj/8nxe9UUTcvlDQKDt94jg9AAAAAAAAAADg7DE+HA1svJ5xpbq3HGk5rF7TvdMHADoAAIA/AACAP+33Kz5IZIC8clB6uu2CRTkifAC+29jxOQAAgD8AAIA/DaoAPlxfFTs0soy+zJ8ZvjhL/bxi1S4/AACAPwAAAABNC5U+l1lkP5utcj6xUSi//LUnPx3NabsAAAAAAAAAABo7y72eCIk9xonyPcYEW74SfhG96hpuPAAAAAAAAAAAcwIBPmTNqz1wSZu+eUCovmTWlb0oTs68AAAAAAAAAACmgiW+Kk1dP9ukPL5bdyS/U1eAvjUHt70AAAAAAAAAAGbywTv5bSA/3pNXPBvqIL/f9b87VVg3vQAAAAAAAAAAs/USPmlGdbyCqA06feaGPL1F5L2OAVk9AACAPwAAgD/mSV+9w5Fhuna5J7PD4GuwZ2OSu2t6yTMAAIA/AACAP9qjJj625De89cQuO0X8Hbl5R5m9y/pZugAAgD8AAIA/JsKZvXKfvj/O4DW/YeppPq2onTyBcga+AAAAAAAAAACmz/c9AzIJvEezI73Dzt07bR0wPf0KGbwAAIA/AACAPyZs0z1c9ya6+m9etlUzrK/Rs9a7KnCGNQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVJhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMICft2EpHLb0CUhpRSlIwBbJRL0IwBdJRHQKFzKeIVM251fZQoaAZoCWgPQwjcnbXbLl1xQJSGlFKUaBVL5WgWR0Chc3MWGh24dX2UKGgGaAloD0MIqdvZV17RcECUhpRSlGgVTdMBaBZHQKFzk801qFh1fZQoaAZoCWgPQwgnT1lNlx1zQJSGlFKUaBVL/2gWR0Chc50/wAlwdX2UKGgGaAloD0MI2ZlC5zUdcECUhpRSlGgVS79oFkdAoXQFuLrHEXV9lChoBmgJaA9DCH0fDhKipmZAlIaUUpRoFU3oA2gWR0ChdM18Ti84dX2UKGgGaAloD0MIYMrAAS1DcECUhpRSlGgVS6FoFkdAoXTTpA2Q4nV9lChoBmgJaA9DCISDvYlhcXFAlIaUUpRoFUvJaBZHQKF0/d5Y5kt1fZQoaAZoCWgPQwhN9zqpb1dyQJSGlFKUaBVLymgWR0ChdR/SH/LldX2UKGgGaAloD0MIRiQKLauncUCUhpRSlGgVS6xoFkdAoXUft+kP+XV9lChoBmgJaA9DCMMOY9LfQHJAlIaUUpRoFUvlaBZHQKF1OcNpdrx1fZQoaAZoCWgPQwgotRfR9uJjQJSGlFKUaBVN6ANoFkdAoXVLgbZOBXV9lChoBmgJaA9DCN7n+Gix4nJAlIaUUpRoFUu4aBZHQKF16wKSgXd1fZQoaAZoCWgPQwiKkSVzLO9yQJSGlFKUaBVL7GgWR0ChdfAfuCwsdX2UKGgGaAloD0MILpJ2o4+6ckCUhpRSlGgVS9VoFkdAoXZiWX1J2HV9lChoBmgJaA9DCG+gwDs5E3BAlIaUUpRoFUuoaBZHQKF2eBXjlxR1fZQoaAZoCWgPQwh9WdqpOdFxQJSGlFKUaBVLuGgWR0ChdrQI+nqFdX2UKGgGaAloD0MICW8PQkChcECUhpRSlGgVS7ZoFkdAoXh7we/5+HV9lChoBmgJaA9DCKu0xTU+lG5AlIaUUpRoFUvAaBZHQKF4jcmBvrJ1fZQoaAZoCWgPQwjaG3xhslhyQJSGlFKUaBVLzWgWR0CheKVJ+UhWdX2UKGgGaAloD0MIuqC+Zc7ickCUhpRSlGgVS8toFkdAoXjyIDYAbXV9lChoBmgJaA9DCF+bjZXYCHFAlIaUUpRoFUvYaBZHQKF5Zc6/7BR1fZQoaAZoCWgPQwiLwcO0b7lxQJSGlFKUaBVL9WgWR0CheYbwSamXdX2UKGgGaAloD0MIQInPnSCPc0CUhpRSlGgVS+loFkdAoXnZMN+b3HV9lChoBmgJaA9DCKcDWU8tG3FAlIaUUpRoFUvCaBZHQKF52jFhodx1fZQoaAZoCWgPQwj0TZoGBclxQJSGlFKUaBVLnmgWR0Chegh+nZTRdX2UKGgGaAloD0MIpaKx9jdcckCUhpRSlGgVS7RoFkdAoXocYwZflnV9lChoBmgJaA9DCFNZFHbRNXFAlIaUUpRoFUvQaBZHQKF6JqL0jC51fZQoaAZoCWgPQwjvU1VoYCRyQJSGlFKUaBVLuWgWR0Chek4plSTAdX2UKGgGaAloD0MIiV3b2+1qcUCUhpRSlGgVS6JoFkdAoXvfJDE3sHV9lChoBmgJaA9DCDChgsPLoXBAlIaUUpRoFUupaBZHQKF8ESVW0Z51fZQoaAZoCWgPQwh4YWu2Mk9zQJSGlFKUaBVLu2gWR0ChfF71RLsbdX2UKGgGaAloD0MIisvxCkQNckCUhpRSlGgVS5hoFkdAoXxrM/yGz3V9lChoBmgJaA9DCO7qVWR0h29AlIaUUpRoFUuhaBZHQKF8dYI0IkZ1fZQoaAZoCWgPQwiQ2sTJfa1yQJSGlFKUaBVLwWgWR0ChfKKsEJSjdX2UKGgGaAloD0MIaAWGrO5lYUCUhpRSlGgVTegDaBZHQKF82BnSOR11fZQoaAZoCWgPQwgzF7g8FmZwQJSGlFKUaBVLqGgWR0ChfRktNBWxdX2UKGgGaAloD0MIwyy0c1pDckCUhpRSlGgVS7xoFkdAoX0ss+V1OnV9lChoBmgJaA9DCIYdxqT/c3JAlIaUUpRoFUvLaBZHQKF9PcafjCJ1fZQoaAZoCWgPQwjKbJBJhhtxQJSGlFKUaBVLxGgWR0ChfVPnjhkzdX2UKGgGaAloD0MIT3Yzo5/YcUCUhpRSlGgVTU8CaBZHQKF9ihufmLd1fZQoaAZoCWgPQwgEcR5OoEdyQJSGlFKUaBVL2WgWR0ChfY7p/wy7dX2UKGgGaAloD0MIuYswRfmlckCUhpRSlGgVS+doFkdAoX2QE0SAY3V9lChoBmgJaA9DCMf2WtB7yG9AlIaUUpRoFUukaBZHQKF+VbSJCSl1fZQoaAZoCWgPQwh1j2yuWjxwQJSGlFKUaBVLxWgWR0Chfnj+irT6dX2UKGgGaAloD0MIuTZUjDOPcECUhpRSlGgVS+toFkdAoX7T1PFefXV9lChoBmgJaA9DCN2XM9sVAnNAlIaUUpRoFUvJaBZHQKF+2Wa+evp1fZQoaAZoCWgPQwi2n4zxYbNxQJSGlFKUaBVLyGgWR0Chft/grH2idX2UKGgGaAloD0MITU7tDFMgbkCUhpRSlGgVS75oFkdAoX7rNbC79XV9lChoBmgJaA9DCLbykv9JM3JAlIaUUpRoFUuwaBZHQKF+8h37k4p1fZQoaAZoCWgPQwiDonkAC4JyQJSGlFKUaBVLwGgWR0Chf3DNQj2SdX2UKGgGaAloD0MIMLyS5PmscECUhpRSlGgVS7RoFkdAoX91Gus90XV9lChoBmgJaA9DCPj578Fro3FAlIaUUpRoFUvTaBZHQKF/lgjQiRp1fZQoaAZoCWgPQwg5twn3Sj9yQJSGlFKUaBVLsWgWR0Chf6EY4yXVdX2UKGgGaAloD0MIUyCzs+gRc0CUhpRSlGgVS7doFkdAoX+2cJ+lTHV9lChoBmgJaA9DCKRUwhM6SHJAlIaUUpRoFUvXaBZHQKF/xJCjUNN1fZQoaAZoCWgPQwg10lJ5+5dyQJSGlFKUaBVLxmgWR0Chf+F/QSi/dX2UKGgGaAloD0MINZawNkZWc0CUhpRSlGgVS8BoFkdAoYC/pY9xInV9lChoBmgJaA9DCPsCeuHOVnJAlIaUUpRoFUunaBZHQKGAywt8NQV1fZQoaAZoCWgPQwjK+s3EtMNwQJSGlFKUaBVL1WgWR0ChgW6Pjn3ddX2UKGgGaAloD0MIaM76lCMpcUCUhpRSlGgVS6ZoFkdAoYGEcbR4QnV9lChoBmgJaA9DCBjuXBhpn3FAlIaUUpRoFUvcaBZHQKGBm9Gqgh91fZQoaAZoCWgPQwhuaqD53OpyQJSGlFKUaBVL7GgWR0ChgeA0CRwIdX2UKGgGaAloD0MIAyZw6+7UcECUhpRSlGgVS8loFkdAoYH8uctoSXV9lChoBmgJaA9DCCk8aHadCHJAlIaUUpRoFUulaBZHQKGCCHjZL7J1fZQoaAZoCWgPQwjnjCjtTXVyQJSGlFKUaBVNAgFoFkdAoYIV7ngYQHV9lChoBmgJaA9DCOY9zjThV3NAlIaUUpRoFUvLaBZHQKGCaQkHD791fZQoaAZoCWgPQwj/snvysOxwQJSGlFKUaBVL12gWR0ChgmmgSOBEdX2UKGgGaAloD0MIY7Mj1TcXcUCUhpRSlGgVS+doFkdAoYKTKDCgsnV9lChoBmgJaA9DCA9/TdYoEWVAlIaUUpRoFU3oA2gWR0ChguyRSxZ/dX2UKGgGaAloD0MIOugSDn3dckCUhpRSlGgVS8hoFkdAoYN5giNbT3V9lChoBmgJaA9DCNeGinF+N2FAlIaUUpRoFU3oA2gWR0Chg4JZW7vodX2UKGgGaAloD0MImPc40wTJcUCUhpRSlGgVS9FoFkdAoYOjDMvAXXV9lChoBmgJaA9DCA/SU+SQT29AlIaUUpRoFUu6aBZHQKGEFZ/0/W11fZQoaAZoCWgPQwixNsZO+HZuQJSGlFKUaBVLn2gWR0ChhBWQGOdYdX2UKGgGaAloD0MIIlM+BFUVcECUhpRSlGgVS7loFkdAoYR1QGfPHHV9lChoBmgJaA9DCH8UdeYefHJAlIaUUpRoFUvmaBZHQKGEe/xDst11fZQoaAZoCWgPQwi77UJznTRvQJSGlFKUaBVLzGgWR0ChhIwTmGM5dX2UKGgGaAloD0MIDmWoium6ckCUhpRSlGgVS+1oFkdAoYSjtkWhy3V9lChoBmgJaA9DCAjNrnsrVXBAlIaUUpRoFUu5aBZHQKGEx9If8uV1fZQoaAZoCWgPQwhv10tTROFxQJSGlFKUaBVLt2gWR0ChhOUutfXxdX2UKGgGaAloD0MIPUfku1TtckCUhpRSlGgVTQIBaBZHQKGFrntfG+91fZQoaAZoCWgPQwiEgHwJFXBxQJSGlFKUaBVL5WgWR0Chhcm+9Jz1dX2UKGgGaAloD0MId/S/XAt9ckCUhpRSlGgVS8poFkdAoYX55NXYDnV9lChoBmgJaA9DCKCkwAKYm3JAlIaUUpRoFUvWaBZHQKGGKGA08/51fZQoaAZoCWgPQwiWPnRBPbBxQJSGlFKUaBVLrWgWR0Chhj8XvYvndX2UKGgGaAloD0MIbsST3UzkcUCUhpRSlGgVS9doFkdAoYZOjZcs2HV9lChoBmgJaA9DCHO9babCw3BAlIaUUpRoFUu4aBZHQKGGYesgdOt1fZQoaAZoCWgPQwiyZI7lnVxwQJSGlFKUaBVLtWgWR0Chhr4sNDtxdX2UKGgGaAloD0MIjpWYZ6Ubb0CUhpRSlGgVS8NoFkdAoYbmlwcYInV9lChoBmgJaA9DCG2P3nAfInFAlIaUUpRoFUu6aBZHQKGG+pFTeft1fZQoaAZoCWgPQwgn3Cvz1uluQJSGlFKUaBVLsGgWR0ChhwKKYRdydX2UKGgGaAloD0MI2hznNqEWcUCUhpRSlGgVS8ZoFkdAoYdkSmIj4nV9lChoBmgJaA9DCF8Lem/M9nBAlIaUUpRoFUvmaBZHQKGHavQnhKl1fZQoaAZoCWgPQwj2s1iKJDlyQJSGlFKUaBVL3GgWR0ChiILi2lVMdX2UKGgGaAloD0MICi/BqY9MckCUhpRSlGgVS61oFkdAoYiIL/jsEHV9lChoBmgJaA9DCGajc36Kx3JAlIaUUpRoFUvXaBZHQKGIjwLmZE51fZQoaAZoCWgPQwglCFdA4fNwQJSGlFKUaBVL12gWR0ChiRA3DNyHdX2UKGgGaAloD0MIZePBFjvkcECUhpRSlGgVS/BoFkdAoYkgdOqNqHV9lChoBmgJaA9DCKzlzkxwI3JAlIaUUpRoFUvZaBZHQKGJPktEofF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 460, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (216 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 245.31600910815897, "std_reward": 52.7456827312251, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-02T11:44:07.272397"}