genki10 commited on
Commit
494199f
·
verified ·
1 Parent(s): 9fe4eb2

End of training

Browse files
Files changed (1) hide show
  1. README.md +58 -58
README.md CHANGED
@@ -5,21 +5,21 @@ base_model: bert-base-uncased
5
  tags:
6
  - generated_from_trainer
7
  model-index:
8
- - name: ASAP_FineTuningBERT_AugV5_k10_task1_organization_fold4
9
  results: []
10
  ---
11
 
12
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
  should probably proofread and complete it, then remove this comment. -->
14
 
15
- # ASAP_FineTuningBERT_AugV5_k10_task1_organization_fold4
16
 
17
  This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
18
  It achieves the following results on the evaluation set:
19
- - Loss: 0.5758
20
- - Qwk: 0.6718
21
- - Mse: 0.5758
22
- - Rmse: 0.7588
23
 
24
  ## Model description
25
 
@@ -48,58 +48,58 @@ The following hyperparameters were used during training:
48
 
49
  ### Training results
50
 
51
- | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
52
- |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|
53
- | No log | 2.0 | 2 | 9.7683 | 0.0018 | 9.7683 | 3.1254 |
54
- | No log | 4.0 | 4 | 8.2498 | 0.0018 | 8.2498 | 2.8722 |
55
- | No log | 6.0 | 6 | 6.8328 | 0.0 | 6.8328 | 2.6140 |
56
- | No log | 8.0 | 8 | 5.3375 | 0.0329 | 5.3375 | 2.3103 |
57
- | 8.9731 | 10.0 | 10 | 4.3556 | 0.0118 | 4.3556 | 2.0870 |
58
- | 8.9731 | 12.0 | 12 | 3.5608 | 0.0040 | 3.5608 | 1.8870 |
59
- | 8.9731 | 14.0 | 14 | 2.8777 | 0.0040 | 2.8777 | 1.6964 |
60
- | 8.9731 | 16.0 | 16 | 2.3505 | 0.1010 | 2.3505 | 1.5331 |
61
- | 8.9731 | 18.0 | 18 | 1.9685 | 0.1264 | 1.9685 | 1.4030 |
62
- | 4.3314 | 20.0 | 20 | 1.6149 | 0.0734 | 1.6149 | 1.2708 |
63
- | 4.3314 | 22.0 | 22 | 1.4079 | 0.1092 | 1.4079 | 1.1865 |
64
- | 4.3314 | 24.0 | 24 | 1.1654 | 0.0975 | 1.1654 | 1.0796 |
65
- | 4.3314 | 26.0 | 26 | 0.9621 | 0.0975 | 0.9621 | 0.9809 |
66
- | 4.3314 | 28.0 | 28 | 1.0460 | 0.1775 | 1.0460 | 1.0228 |
67
- | 2.3195 | 30.0 | 30 | 0.7254 | 0.4930 | 0.7254 | 0.8517 |
68
- | 2.3195 | 32.0 | 32 | 0.6288 | 0.5308 | 0.6288 | 0.7930 |
69
- | 2.3195 | 34.0 | 34 | 0.7271 | 0.5327 | 0.7271 | 0.8527 |
70
- | 2.3195 | 36.0 | 36 | 0.5334 | 0.5459 | 0.5334 | 0.7303 |
71
- | 2.3195 | 38.0 | 38 | 0.5264 | 0.5264 | 0.5264 | 0.7256 |
72
- | 1.2151 | 40.0 | 40 | 0.5444 | 0.6055 | 0.5444 | 0.7378 |
73
- | 1.2151 | 42.0 | 42 | 0.4974 | 0.5838 | 0.4974 | 0.7053 |
74
- | 1.2151 | 44.0 | 44 | 0.4992 | 0.5834 | 0.4992 | 0.7065 |
75
- | 1.2151 | 46.0 | 46 | 0.4907 | 0.6217 | 0.4907 | 0.7005 |
76
- | 1.2151 | 48.0 | 48 | 0.4903 | 0.6602 | 0.4903 | 0.7002 |
77
- | 0.6065 | 50.0 | 50 | 0.4976 | 0.6520 | 0.4976 | 0.7054 |
78
- | 0.6065 | 52.0 | 52 | 0.4928 | 0.6757 | 0.4928 | 0.7020 |
79
- | 0.6065 | 54.0 | 54 | 0.5738 | 0.6383 | 0.5738 | 0.7575 |
80
- | 0.6065 | 56.0 | 56 | 0.5469 | 0.6828 | 0.5469 | 0.7395 |
81
- | 0.6065 | 58.0 | 58 | 0.5523 | 0.6760 | 0.5523 | 0.7432 |
82
- | 0.3084 | 60.0 | 60 | 0.5803 | 0.6420 | 0.5803 | 0.7618 |
83
- | 0.3084 | 62.0 | 62 | 0.6608 | 0.6124 | 0.6608 | 0.8129 |
84
- | 0.3084 | 64.0 | 64 | 0.5481 | 0.6893 | 0.5481 | 0.7404 |
85
- | 0.3084 | 66.0 | 66 | 0.5452 | 0.6779 | 0.5452 | 0.7384 |
86
- | 0.3084 | 68.0 | 68 | 0.6938 | 0.6277 | 0.6938 | 0.8329 |
87
- | 0.1723 | 70.0 | 70 | 0.7560 | 0.6070 | 0.7560 | 0.8695 |
88
- | 0.1723 | 72.0 | 72 | 0.5880 | 0.6867 | 0.5880 | 0.7668 |
89
- | 0.1723 | 74.0 | 74 | 0.5626 | 0.6901 | 0.5626 | 0.7501 |
90
- | 0.1723 | 76.0 | 76 | 0.6318 | 0.6317 | 0.6318 | 0.7948 |
91
- | 0.1723 | 78.0 | 78 | 0.6981 | 0.6187 | 0.6981 | 0.8355 |
92
- | 0.1229 | 80.0 | 80 | 0.6227 | 0.6372 | 0.6227 | 0.7891 |
93
- | 0.1229 | 82.0 | 82 | 0.6047 | 0.6486 | 0.6047 | 0.7776 |
94
- | 0.1229 | 84.0 | 84 | 0.6171 | 0.6511 | 0.6171 | 0.7855 |
95
- | 0.1229 | 86.0 | 86 | 0.6257 | 0.6465 | 0.6257 | 0.7910 |
96
- | 0.1229 | 88.0 | 88 | 0.6828 | 0.6261 | 0.6828 | 0.8263 |
97
- | 0.0736 | 90.0 | 90 | 0.6638 | 0.6255 | 0.6638 | 0.8147 |
98
- | 0.0736 | 92.0 | 92 | 0.5854 | 0.6629 | 0.5854 | 0.7651 |
99
- | 0.0736 | 94.0 | 94 | 0.5649 | 0.6745 | 0.5649 | 0.7516 |
100
- | 0.0736 | 96.0 | 96 | 0.5690 | 0.6734 | 0.5690 | 0.7543 |
101
- | 0.0736 | 98.0 | 98 | 0.5707 | 0.6734 | 0.5707 | 0.7554 |
102
- | 0.0687 | 100.0 | 100 | 0.5758 | 0.6718 | 0.5758 | 0.7588 |
103
 
104
 
105
  ### Framework versions
 
5
  tags:
6
  - generated_from_trainer
7
  model-index:
8
+ - name: ASAP_FineTuningBERT_UnAugV5_k1_task1_organization_fold0
9
  results: []
10
  ---
11
 
12
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
  should probably proofread and complete it, then remove this comment. -->
14
 
15
+ # ASAP_FineTuningBERT_UnAugV5_k1_task1_organization_fold0
16
 
17
  This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
18
  It achieves the following results on the evaluation set:
19
+ - Loss: 0.6550
20
+ - Qwk: 0.6278
21
+ - Mse: 0.6550
22
+ - Rmse: 0.8094
23
 
24
  ## Model description
25
 
 
48
 
49
  ### Training results
50
 
51
+ | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
52
+ |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:------:|
53
+ | No log | 2.0 | 2 | 10.5351 | 0.0061 | 10.5351 | 3.2458 |
54
+ | No log | 4.0 | 4 | 8.2198 | 0.0054 | 8.2198 | 2.8670 |
55
+ | No log | 6.0 | 6 | 6.3796 | 0.0029 | 6.3796 | 2.5258 |
56
+ | No log | 8.0 | 8 | 4.9785 | 0.0139 | 4.9785 | 2.2313 |
57
+ | 9.3005 | 10.0 | 10 | 3.7548 | 0.0115 | 3.7548 | 1.9377 |
58
+ | 9.3005 | 12.0 | 12 | 2.7153 | 0.0077 | 2.7153 | 1.6478 |
59
+ | 9.3005 | 14.0 | 14 | 1.8897 | 0.0520 | 1.8897 | 1.3747 |
60
+ | 9.3005 | 16.0 | 16 | 1.3712 | 0.0520 | 1.3712 | 1.1710 |
61
+ | 9.3005 | 18.0 | 18 | 1.0739 | 0.0520 | 1.0739 | 1.0363 |
62
+ | 3.4599 | 20.0 | 20 | 0.8739 | 0.0664 | 0.8739 | 0.9348 |
63
+ | 3.4599 | 22.0 | 22 | 0.7690 | 0.3702 | 0.7690 | 0.8769 |
64
+ | 3.4599 | 24.0 | 24 | 0.6434 | 0.4429 | 0.6434 | 0.8021 |
65
+ | 3.4599 | 26.0 | 26 | 0.6024 | 0.4529 | 0.6024 | 0.7761 |
66
+ | 3.4599 | 28.0 | 28 | 0.5723 | 0.4703 | 0.5723 | 0.7565 |
67
+ | 1.4411 | 30.0 | 30 | 0.5559 | 0.5397 | 0.5559 | 0.7456 |
68
+ | 1.4411 | 32.0 | 32 | 0.5948 | 0.4984 | 0.5948 | 0.7713 |
69
+ | 1.4411 | 34.0 | 34 | 0.5494 | 0.5483 | 0.5494 | 0.7412 |
70
+ | 1.4411 | 36.0 | 36 | 0.6670 | 0.5671 | 0.6670 | 0.8167 |
71
+ | 1.4411 | 38.0 | 38 | 0.5804 | 0.6215 | 0.5804 | 0.7618 |
72
+ | 0.6198 | 40.0 | 40 | 0.7679 | 0.5270 | 0.7679 | 0.8763 |
73
+ | 0.6198 | 42.0 | 42 | 0.6548 | 0.5980 | 0.6548 | 0.8092 |
74
+ | 0.6198 | 44.0 | 44 | 0.5776 | 0.6053 | 0.5776 | 0.7600 |
75
+ | 0.6198 | 46.0 | 46 | 1.0709 | 0.4333 | 1.0709 | 1.0349 |
76
+ | 0.6198 | 48.0 | 48 | 1.0767 | 0.4461 | 1.0767 | 1.0376 |
77
+ | 0.3311 | 50.0 | 50 | 0.6082 | 0.6208 | 0.6082 | 0.7799 |
78
+ | 0.3311 | 52.0 | 52 | 0.6632 | 0.6153 | 0.6632 | 0.8144 |
79
+ | 0.3311 | 54.0 | 54 | 0.8101 | 0.5604 | 0.8101 | 0.9000 |
80
+ | 0.3311 | 56.0 | 56 | 0.6507 | 0.6362 | 0.6507 | 0.8067 |
81
+ | 0.3311 | 58.0 | 58 | 0.7474 | 0.5957 | 0.7474 | 0.8645 |
82
+ | 0.1608 | 60.0 | 60 | 0.7510 | 0.5770 | 0.7510 | 0.8666 |
83
+ | 0.1608 | 62.0 | 62 | 0.6489 | 0.6265 | 0.6489 | 0.8056 |
84
+ | 0.1608 | 64.0 | 64 | 0.8040 | 0.5634 | 0.8040 | 0.8966 |
85
+ | 0.1608 | 66.0 | 66 | 0.6306 | 0.6342 | 0.6306 | 0.7941 |
86
+ | 0.1608 | 68.0 | 68 | 0.6491 | 0.6393 | 0.6491 | 0.8056 |
87
+ | 0.0968 | 70.0 | 70 | 0.8924 | 0.5310 | 0.8924 | 0.9447 |
88
+ | 0.0968 | 72.0 | 72 | 0.8359 | 0.5514 | 0.8359 | 0.9143 |
89
+ | 0.0968 | 74.0 | 74 | 0.6026 | 0.6239 | 0.6026 | 0.7763 |
90
+ | 0.0968 | 76.0 | 76 | 0.5893 | 0.6221 | 0.5893 | 0.7676 |
91
+ | 0.0968 | 78.0 | 78 | 0.6519 | 0.6201 | 0.6519 | 0.8074 |
92
+ | 0.073 | 80.0 | 80 | 0.9077 | 0.5460 | 0.9077 | 0.9527 |
93
+ | 0.073 | 82.0 | 82 | 0.9019 | 0.5462 | 0.9019 | 0.9497 |
94
+ | 0.073 | 84.0 | 84 | 0.7039 | 0.6093 | 0.7039 | 0.8390 |
95
+ | 0.073 | 86.0 | 86 | 0.6333 | 0.6300 | 0.6333 | 0.7958 |
96
+ | 0.073 | 88.0 | 88 | 0.6698 | 0.6237 | 0.6698 | 0.8184 |
97
+ | 0.0569 | 90.0 | 90 | 0.7536 | 0.5817 | 0.7536 | 0.8681 |
98
+ | 0.0569 | 92.0 | 92 | 0.8272 | 0.5526 | 0.8272 | 0.9095 |
99
+ | 0.0569 | 94.0 | 94 | 0.7834 | 0.5585 | 0.7834 | 0.8851 |
100
+ | 0.0569 | 96.0 | 96 | 0.7058 | 0.6116 | 0.7058 | 0.8401 |
101
+ | 0.0569 | 98.0 | 98 | 0.6605 | 0.6294 | 0.6605 | 0.8127 |
102
+ | 0.0526 | 100.0 | 100 | 0.6550 | 0.6278 | 0.6550 | 0.8094 |
103
 
104
 
105
  ### Framework versions