Upload . with huggingface_hub
Browse files- README.md +127 -0
- config.json +65 -0
- model.skops +0 -0
README.md
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: sklearn
|
3 |
+
tags:
|
4 |
+
- sklearn
|
5 |
+
- skops
|
6 |
+
- tabular-regression
|
7 |
+
model_format: skops
|
8 |
+
model_file: model.skops
|
9 |
+
widget:
|
10 |
+
structuredData:
|
11 |
+
x0:
|
12 |
+
- -0.8513550738681201
|
13 |
+
- 0.3565756375241982
|
14 |
+
- -0.5493723960200406
|
15 |
+
x1:
|
16 |
+
- -0.9801306786815437
|
17 |
+
- 0.16144422497410207
|
18 |
+
- -0.5044744688250247
|
19 |
+
x2:
|
20 |
+
- -0.40478372420423153
|
21 |
+
- 0.465368421656243
|
22 |
+
- -0.6223217606693501
|
23 |
+
x3:
|
24 |
+
- -0.5539725609683268
|
25 |
+
- 0.3927870023121129
|
26 |
+
- 1.2133119571551605
|
27 |
+
x4:
|
28 |
+
- -0.3313192794050237
|
29 |
+
- -0.5263980861381337
|
30 |
+
- 0.14244353694681483
|
31 |
+
x5:
|
32 |
+
- -0.6076784605515674
|
33 |
+
- -0.3021390244014409
|
34 |
+
- 0.37259389709675395
|
35 |
+
x6:
|
36 |
+
- 0.31079384041548314
|
37 |
+
- -0.11643850592424994
|
38 |
+
- -0.7648620670356181
|
39 |
+
x7:
|
40 |
+
- -0.7921692833892792
|
41 |
+
- 0.5610338186827566
|
42 |
+
- -0.707594089509777
|
43 |
+
---
|
44 |
+
|
45 |
+
# Model description
|
46 |
+
|
47 |
+
[More Information Needed]
|
48 |
+
|
49 |
+
## Intended uses & limitations
|
50 |
+
|
51 |
+
[More Information Needed]
|
52 |
+
|
53 |
+
## Training Procedure
|
54 |
+
|
55 |
+
### Hyperparameters
|
56 |
+
|
57 |
+
The model is trained with below hyperparameters.
|
58 |
+
|
59 |
+
<details>
|
60 |
+
<summary> Click to expand </summary>
|
61 |
+
|
62 |
+
| Hyperparameter | Value |
|
63 |
+
|-------------------|---------|
|
64 |
+
| C | 1.0 |
|
65 |
+
| class_weight | |
|
66 |
+
| dual | False |
|
67 |
+
| fit_intercept | True |
|
68 |
+
| intercept_scaling | 1 |
|
69 |
+
| l1_ratio | |
|
70 |
+
| max_iter | 100 |
|
71 |
+
| multi_class | auto |
|
72 |
+
| n_jobs | |
|
73 |
+
| penalty | l2 |
|
74 |
+
| random_state | 0 |
|
75 |
+
| solver | lbfgs |
|
76 |
+
| tol | 0.0001 |
|
77 |
+
| verbose | 0 |
|
78 |
+
| warm_start | False |
|
79 |
+
|
80 |
+
</details>
|
81 |
+
|
82 |
+
### Model Plot
|
83 |
+
|
84 |
+
The model plot is below.
|
85 |
+
|
86 |
+
<style>#sk-90f04601-be1b-4c03-ba77-046c22963fb6 {color: black;background-color: white;}#sk-90f04601-be1b-4c03-ba77-046c22963fb6 pre{padding: 0;}#sk-90f04601-be1b-4c03-ba77-046c22963fb6 div.sk-toggleable {background-color: white;}#sk-90f04601-be1b-4c03-ba77-046c22963fb6 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-90f04601-be1b-4c03-ba77-046c22963fb6 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-90f04601-be1b-4c03-ba77-046c22963fb6 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-90f04601-be1b-4c03-ba77-046c22963fb6 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-90f04601-be1b-4c03-ba77-046c22963fb6 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-90f04601-be1b-4c03-ba77-046c22963fb6 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-90f04601-be1b-4c03-ba77-046c22963fb6 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-90f04601-be1b-4c03-ba77-046c22963fb6 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-90f04601-be1b-4c03-ba77-046c22963fb6 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-90f04601-be1b-4c03-ba77-046c22963fb6 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-90f04601-be1b-4c03-ba77-046c22963fb6 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-90f04601-be1b-4c03-ba77-046c22963fb6 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-90f04601-be1b-4c03-ba77-046c22963fb6 div.sk-estimator:hover {background-color: #d4ebff;}#sk-90f04601-be1b-4c03-ba77-046c22963fb6 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-90f04601-be1b-4c03-ba77-046c22963fb6 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-90f04601-be1b-4c03-ba77-046c22963fb6 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-90f04601-be1b-4c03-ba77-046c22963fb6 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-90f04601-be1b-4c03-ba77-046c22963fb6 div.sk-item {z-index: 1;}#sk-90f04601-be1b-4c03-ba77-046c22963fb6 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-90f04601-be1b-4c03-ba77-046c22963fb6 div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-90f04601-be1b-4c03-ba77-046c22963fb6 div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-90f04601-be1b-4c03-ba77-046c22963fb6 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-90f04601-be1b-4c03-ba77-046c22963fb6 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-90f04601-be1b-4c03-ba77-046c22963fb6 div.sk-parallel-item:only-child::after {width: 0;}#sk-90f04601-be1b-4c03-ba77-046c22963fb6 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-90f04601-be1b-4c03-ba77-046c22963fb6 div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-90f04601-be1b-4c03-ba77-046c22963fb6 div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-90f04601-be1b-4c03-ba77-046c22963fb6 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-90f04601-be1b-4c03-ba77-046c22963fb6 div.sk-text-repr-fallback {display: none;}</style><div id="sk-90f04601-be1b-4c03-ba77-046c22963fb6" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>LogisticRegression(random_state=0)</pre><b>Please rerun this cell to show the HTML repr or trust the notebook.</b></div><div class="sk-container" hidden><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="0f833999-8370-4e5a-b408-d110b9efa0de" type="checkbox" checked><label for="0f833999-8370-4e5a-b408-d110b9efa0de" class="sk-toggleable__label sk-toggleable__label-arrow">LogisticRegression</label><div class="sk-toggleable__content"><pre>LogisticRegression(random_state=0)</pre></div></div></div></div></div>
|
87 |
+
|
88 |
+
## Evaluation Results
|
89 |
+
|
90 |
+
You can find the details about evaluation process and the evaluation results.
|
91 |
+
|
92 |
+
| Metric | Value |
|
93 |
+
|----------------|----------|
|
94 |
+
| Train Accuracy | 0.791531 |
|
95 |
+
| Test Accuracy | 0.714286 |
|
96 |
+
|
97 |
+
# How to Get Started with the Model
|
98 |
+
|
99 |
+
[More Information Needed]
|
100 |
+
|
101 |
+
# Model Card Authors
|
102 |
+
|
103 |
+
This model card is written by following authors:
|
104 |
+
|
105 |
+
[More Information Needed]
|
106 |
+
|
107 |
+
# Model Card Contact
|
108 |
+
|
109 |
+
You can contact the model card authors through following channels:
|
110 |
+
[More Information Needed]
|
111 |
+
|
112 |
+
# Citation
|
113 |
+
|
114 |
+
Below you can find information related to citation.
|
115 |
+
|
116 |
+
**BibTeX:**
|
117 |
+
```
|
118 |
+
[More Information Needed]
|
119 |
+
```
|
120 |
+
|
121 |
+
# limitations
|
122 |
+
|
123 |
+
Mô hình chưa thể dùng trong production.
|
124 |
+
|
125 |
+
# model_description
|
126 |
+
|
127 |
+
Regression model thử nghiệm với skops.
|
config.json
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"sklearn": {
|
3 |
+
"columns": [
|
4 |
+
"x0",
|
5 |
+
"x1",
|
6 |
+
"x2",
|
7 |
+
"x3",
|
8 |
+
"x4",
|
9 |
+
"x5",
|
10 |
+
"x6",
|
11 |
+
"x7"
|
12 |
+
],
|
13 |
+
"environment": [
|
14 |
+
"scikit-learn"
|
15 |
+
],
|
16 |
+
"example_input": {
|
17 |
+
"x0": [
|
18 |
+
-0.8513550738681201,
|
19 |
+
0.3565756375241982,
|
20 |
+
-0.5493723960200406
|
21 |
+
],
|
22 |
+
"x1": [
|
23 |
+
-0.9801306786815437,
|
24 |
+
0.16144422497410207,
|
25 |
+
-0.5044744688250247
|
26 |
+
],
|
27 |
+
"x2": [
|
28 |
+
-0.40478372420423153,
|
29 |
+
0.465368421656243,
|
30 |
+
-0.6223217606693501
|
31 |
+
],
|
32 |
+
"x3": [
|
33 |
+
-0.5539725609683268,
|
34 |
+
0.3927870023121129,
|
35 |
+
1.2133119571551605
|
36 |
+
],
|
37 |
+
"x4": [
|
38 |
+
-0.3313192794050237,
|
39 |
+
-0.5263980861381337,
|
40 |
+
0.14244353694681483
|
41 |
+
],
|
42 |
+
"x5": [
|
43 |
+
-0.6076784605515674,
|
44 |
+
-0.3021390244014409,
|
45 |
+
0.37259389709675395
|
46 |
+
],
|
47 |
+
"x6": [
|
48 |
+
0.31079384041548314,
|
49 |
+
-0.11643850592424994,
|
50 |
+
-0.7648620670356181
|
51 |
+
],
|
52 |
+
"x7": [
|
53 |
+
-0.7921692833892792,
|
54 |
+
0.5610338186827566,
|
55 |
+
-0.707594089509777
|
56 |
+
]
|
57 |
+
},
|
58 |
+
"model": {
|
59 |
+
"file": "model.skops"
|
60 |
+
},
|
61 |
+
"model_format": "skops",
|
62 |
+
"task": "tabular-regression",
|
63 |
+
"use_intelex": false
|
64 |
+
}
|
65 |
+
}
|
model.skops
ADDED
Binary file (9.31 kB). View file
|
|