gechim commited on
Commit
248c528
·
verified ·
1 Parent(s): 696a50a

End of training

Browse files
Files changed (2) hide show
  1. README.md +75 -75
  2. model.safetensors +1 -1
README.md CHANGED
@@ -17,9 +17,9 @@ should probably proofread and complete it, then remove this comment. -->
17
 
18
  This model is a fine-tuned version of [vinai/phobert-base-v2](https://huggingface.co/vinai/phobert-base-v2) on an unknown dataset.
19
  It achieves the following results on the evaluation set:
20
- - Loss: 0.1888
21
- - Accuracy: 0.9622
22
- - F1: 0.9622
23
 
24
  ## Model description
25
 
@@ -50,78 +50,78 @@ The following hyperparameters were used during training:
50
 
51
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
52
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
53
- | No log | 0.14 | 50 | 0.2349 | 0.9218 | 0.9218 |
54
- | No log | 0.28 | 100 | 0.2021 | 0.9372 | 0.9371 |
55
- | No log | 0.42 | 150 | 0.1821 | 0.9428 | 0.9429 |
56
- | No log | 0.56 | 200 | 0.1753 | 0.9512 | 0.9513 |
57
- | No log | 0.69 | 250 | 0.1589 | 0.9521 | 0.9521 |
58
- | No log | 0.83 | 300 | 0.1597 | 0.9551 | 0.9552 |
59
- | No log | 0.97 | 350 | 0.1688 | 0.9540 | 0.9541 |
60
- | 0.2039 | 1.11 | 400 | 0.1633 | 0.9526 | 0.9527 |
61
- | 0.2039 | 1.25 | 450 | 0.1436 | 0.9532 | 0.9532 |
62
- | 0.2039 | 1.39 | 500 | 0.1397 | 0.9540 | 0.9541 |
63
- | 0.2039 | 1.53 | 550 | 0.1473 | 0.9596 | 0.9596 |
64
- | 0.2039 | 1.67 | 600 | 0.1435 | 0.9579 | 0.9580 |
65
- | 0.2039 | 1.81 | 650 | 0.1486 | 0.9546 | 0.9547 |
66
- | 0.2039 | 1.94 | 700 | 0.1341 | 0.9588 | 0.9588 |
67
- | 0.129 | 2.08 | 750 | 0.1322 | 0.9605 | 0.9605 |
68
- | 0.129 | 2.22 | 800 | 0.1253 | 0.9599 | 0.9599 |
69
- | 0.129 | 2.36 | 850 | 0.1281 | 0.9633 | 0.9633 |
70
- | 0.129 | 2.5 | 900 | 0.1298 | 0.9591 | 0.9591 |
71
- | 0.129 | 2.64 | 950 | 0.1293 | 0.9599 | 0.9599 |
72
- | 0.129 | 2.78 | 1000 | 0.1286 | 0.9622 | 0.9622 |
73
- | 0.129 | 2.92 | 1050 | 0.1329 | 0.9630 | 0.9630 |
74
- | 0.1055 | 3.06 | 1100 | 0.1407 | 0.9624 | 0.9625 |
75
- | 0.1055 | 3.19 | 1150 | 0.1334 | 0.9608 | 0.9608 |
76
- | 0.1055 | 3.33 | 1200 | 0.1398 | 0.9568 | 0.9569 |
77
- | 0.1055 | 3.47 | 1250 | 0.1413 | 0.9605 | 0.9605 |
78
- | 0.1055 | 3.61 | 1300 | 0.1403 | 0.9622 | 0.9622 |
79
- | 0.1055 | 3.75 | 1350 | 0.1284 | 0.9627 | 0.9627 |
80
- | 0.1055 | 3.89 | 1400 | 0.1294 | 0.9605 | 0.9605 |
81
- | 0.0881 | 4.03 | 1450 | 0.1590 | 0.9591 | 0.9591 |
82
- | 0.0881 | 4.17 | 1500 | 0.1291 | 0.9624 | 0.9625 |
83
- | 0.0881 | 4.31 | 1550 | 0.1344 | 0.9633 | 0.9633 |
84
- | 0.0881 | 4.44 | 1600 | 0.1494 | 0.9627 | 0.9627 |
85
- | 0.0881 | 4.58 | 1650 | 0.1528 | 0.9591 | 0.9591 |
86
- | 0.0881 | 4.72 | 1700 | 0.1397 | 0.9610 | 0.9611 |
87
- | 0.0881 | 4.86 | 1750 | 0.1461 | 0.9652 | 0.9653 |
88
- | 0.0739 | 5.0 | 1800 | 0.1425 | 0.9633 | 0.9633 |
89
- | 0.0739 | 5.14 | 1850 | 0.1539 | 0.9610 | 0.9611 |
90
- | 0.0739 | 5.28 | 1900 | 0.1513 | 0.9613 | 0.9614 |
91
- | 0.0739 | 5.42 | 1950 | 0.1481 | 0.9619 | 0.9619 |
92
- | 0.0739 | 5.56 | 2000 | 0.1477 | 0.9582 | 0.9583 |
93
- | 0.0739 | 5.69 | 2050 | 0.1449 | 0.9630 | 0.9630 |
94
- | 0.0739 | 5.83 | 2100 | 0.1658 | 0.9633 | 0.9633 |
95
- | 0.0739 | 5.97 | 2150 | 0.1649 | 0.9602 | 0.9602 |
96
- | 0.062 | 6.11 | 2200 | 0.1705 | 0.9577 | 0.9577 |
97
- | 0.062 | 6.25 | 2250 | 0.1727 | 0.9613 | 0.9613 |
98
- | 0.062 | 6.39 | 2300 | 0.1803 | 0.9568 | 0.9569 |
99
- | 0.062 | 6.53 | 2350 | 0.1670 | 0.9627 | 0.9627 |
100
- | 0.062 | 6.67 | 2400 | 0.1748 | 0.9624 | 0.9625 |
101
- | 0.062 | 6.81 | 2450 | 0.1597 | 0.9605 | 0.9605 |
102
- | 0.062 | 6.94 | 2500 | 0.1659 | 0.9638 | 0.9639 |
103
- | 0.0524 | 7.08 | 2550 | 0.1689 | 0.9630 | 0.9630 |
104
- | 0.0524 | 7.22 | 2600 | 0.1700 | 0.9605 | 0.9605 |
105
- | 0.0524 | 7.36 | 2650 | 0.1846 | 0.9599 | 0.9600 |
106
- | 0.0524 | 7.5 | 2700 | 0.1789 | 0.9602 | 0.9602 |
107
- | 0.0524 | 7.64 | 2750 | 0.1705 | 0.9613 | 0.9613 |
108
- | 0.0524 | 7.78 | 2800 | 0.1639 | 0.9636 | 0.9636 |
109
- | 0.0524 | 7.92 | 2850 | 0.1679 | 0.9644 | 0.9644 |
110
- | 0.0432 | 8.06 | 2900 | 0.1716 | 0.9593 | 0.9594 |
111
- | 0.0432 | 8.19 | 2950 | 0.1837 | 0.9619 | 0.9619 |
112
- | 0.0432 | 8.33 | 3000 | 0.1904 | 0.9619 | 0.9619 |
113
- | 0.0432 | 8.47 | 3050 | 0.1903 | 0.9610 | 0.9611 |
114
- | 0.0432 | 8.61 | 3100 | 0.1806 | 0.9613 | 0.9614 |
115
- | 0.0432 | 8.75 | 3150 | 0.1811 | 0.9630 | 0.9630 |
116
- | 0.0432 | 8.89 | 3200 | 0.1881 | 0.9616 | 0.9616 |
117
- | 0.0408 | 9.03 | 3250 | 0.1890 | 0.9613 | 0.9614 |
118
- | 0.0408 | 9.17 | 3300 | 0.1855 | 0.9636 | 0.9636 |
119
- | 0.0408 | 9.31 | 3350 | 0.1899 | 0.9610 | 0.9611 |
120
- | 0.0408 | 9.44 | 3400 | 0.1907 | 0.9608 | 0.9608 |
121
- | 0.0408 | 9.58 | 3450 | 0.1839 | 0.9616 | 0.9616 |
122
- | 0.0408 | 9.72 | 3500 | 0.1873 | 0.9613 | 0.9613 |
123
- | 0.0408 | 9.86 | 3550 | 0.1885 | 0.9622 | 0.9622 |
124
- | 0.0329 | 10.0 | 3600 | 0.1888 | 0.9622 | 0.9622 |
125
 
126
 
127
  ### Framework versions
 
17
 
18
  This model is a fine-tuned version of [vinai/phobert-base-v2](https://huggingface.co/vinai/phobert-base-v2) on an unknown dataset.
19
  It achieves the following results on the evaluation set:
20
+ - Loss: 0.2000
21
+ - Accuracy: 0.9593
22
+ - F1: 0.9594
23
 
24
  ## Model description
25
 
 
50
 
51
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
52
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
53
+ | No log | 0.14 | 50 | 0.2415 | 0.9190 | 0.9192 |
54
+ | No log | 0.28 | 100 | 0.1917 | 0.9378 | 0.9379 |
55
+ | No log | 0.42 | 150 | 0.1861 | 0.9434 | 0.9434 |
56
+ | No log | 0.56 | 200 | 0.1760 | 0.9493 | 0.9493 |
57
+ | No log | 0.69 | 250 | 0.1706 | 0.9484 | 0.9484 |
58
+ | No log | 0.83 | 300 | 0.1710 | 0.9467 | 0.9467 |
59
+ | No log | 0.97 | 350 | 0.1609 | 0.9507 | 0.9507 |
60
+ | 0.2152 | 1.11 | 400 | 0.1678 | 0.9445 | 0.9446 |
61
+ | 0.2152 | 1.25 | 450 | 0.1626 | 0.9515 | 0.9515 |
62
+ | 0.2152 | 1.39 | 500 | 0.2076 | 0.9341 | 0.9343 |
63
+ | 0.2152 | 1.53 | 550 | 0.1559 | 0.9537 | 0.9538 |
64
+ | 0.2152 | 1.67 | 600 | 0.1562 | 0.9526 | 0.9526 |
65
+ | 0.2152 | 1.81 | 650 | 0.1377 | 0.9591 | 0.9591 |
66
+ | 0.2152 | 1.94 | 700 | 0.1396 | 0.9579 | 0.9580 |
67
+ | 0.1375 | 2.08 | 750 | 0.1526 | 0.9504 | 0.9505 |
68
+ | 0.1375 | 2.22 | 800 | 0.1507 | 0.9577 | 0.9577 |
69
+ | 0.1375 | 2.36 | 850 | 0.1485 | 0.9568 | 0.9568 |
70
+ | 0.1375 | 2.5 | 900 | 0.1419 | 0.9571 | 0.9572 |
71
+ | 0.1375 | 2.64 | 950 | 0.1552 | 0.9526 | 0.9527 |
72
+ | 0.1375 | 2.78 | 1000 | 0.1419 | 0.9588 | 0.9588 |
73
+ | 0.1375 | 2.92 | 1050 | 0.1338 | 0.9602 | 0.9602 |
74
+ | 0.1105 | 3.06 | 1100 | 0.1414 | 0.9599 | 0.9600 |
75
+ | 0.1105 | 3.19 | 1150 | 0.1420 | 0.9608 | 0.9608 |
76
+ | 0.1105 | 3.33 | 1200 | 0.1498 | 0.9574 | 0.9575 |
77
+ | 0.1105 | 3.47 | 1250 | 0.1402 | 0.9596 | 0.9596 |
78
+ | 0.1105 | 3.61 | 1300 | 0.1477 | 0.9596 | 0.9597 |
79
+ | 0.1105 | 3.75 | 1350 | 0.1362 | 0.9599 | 0.9599 |
80
+ | 0.1105 | 3.89 | 1400 | 0.1322 | 0.9563 | 0.9563 |
81
+ | 0.0916 | 4.03 | 1450 | 0.1384 | 0.9568 | 0.9569 |
82
+ | 0.0916 | 4.17 | 1500 | 0.1613 | 0.9596 | 0.9597 |
83
+ | 0.0916 | 4.31 | 1550 | 0.1509 | 0.9602 | 0.9602 |
84
+ | 0.0916 | 4.44 | 1600 | 0.1342 | 0.9591 | 0.9591 |
85
+ | 0.0916 | 4.58 | 1650 | 0.1479 | 0.9602 | 0.9602 |
86
+ | 0.0916 | 4.72 | 1700 | 0.1518 | 0.9588 | 0.9588 |
87
+ | 0.0916 | 4.86 | 1750 | 0.1474 | 0.9605 | 0.9605 |
88
+ | 0.0796 | 5.0 | 1800 | 0.1558 | 0.9543 | 0.9544 |
89
+ | 0.0796 | 5.14 | 1850 | 0.1645 | 0.9582 | 0.9582 |
90
+ | 0.0796 | 5.28 | 1900 | 0.1674 | 0.9577 | 0.9577 |
91
+ | 0.0796 | 5.42 | 1950 | 0.1669 | 0.9602 | 0.9602 |
92
+ | 0.0796 | 5.56 | 2000 | 0.1699 | 0.9588 | 0.9587 |
93
+ | 0.0796 | 5.69 | 2050 | 0.1514 | 0.9593 | 0.9594 |
94
+ | 0.0796 | 5.83 | 2100 | 0.1533 | 0.9568 | 0.9569 |
95
+ | 0.0796 | 5.97 | 2150 | 0.1577 | 0.9588 | 0.9588 |
96
+ | 0.0666 | 6.11 | 2200 | 0.1636 | 0.9585 | 0.9585 |
97
+ | 0.0666 | 6.25 | 2250 | 0.1717 | 0.9554 | 0.9555 |
98
+ | 0.0666 | 6.39 | 2300 | 0.1606 | 0.9563 | 0.9563 |
99
+ | 0.0666 | 6.53 | 2350 | 0.1649 | 0.9588 | 0.9588 |
100
+ | 0.0666 | 6.67 | 2400 | 0.1660 | 0.9579 | 0.9580 |
101
+ | 0.0666 | 6.81 | 2450 | 0.1593 | 0.9557 | 0.9558 |
102
+ | 0.0666 | 6.94 | 2500 | 0.1615 | 0.9577 | 0.9577 |
103
+ | 0.0563 | 7.08 | 2550 | 0.1848 | 0.9602 | 0.9602 |
104
+ | 0.0563 | 7.22 | 2600 | 0.1679 | 0.9596 | 0.9597 |
105
+ | 0.0563 | 7.36 | 2650 | 0.1716 | 0.9596 | 0.9596 |
106
+ | 0.0563 | 7.5 | 2700 | 0.1716 | 0.9585 | 0.9585 |
107
+ | 0.0563 | 7.64 | 2750 | 0.1888 | 0.9613 | 0.9613 |
108
+ | 0.0563 | 7.78 | 2800 | 0.1938 | 0.9596 | 0.9596 |
109
+ | 0.0563 | 7.92 | 2850 | 0.1897 | 0.9588 | 0.9588 |
110
+ | 0.0455 | 8.06 | 2900 | 0.1913 | 0.9554 | 0.9555 |
111
+ | 0.0455 | 8.19 | 2950 | 0.1874 | 0.9563 | 0.9563 |
112
+ | 0.0455 | 8.33 | 3000 | 0.1913 | 0.9588 | 0.9588 |
113
+ | 0.0455 | 8.47 | 3050 | 0.1925 | 0.9596 | 0.9596 |
114
+ | 0.0455 | 8.61 | 3100 | 0.1961 | 0.9577 | 0.9577 |
115
+ | 0.0455 | 8.75 | 3150 | 0.1904 | 0.9577 | 0.9577 |
116
+ | 0.0455 | 8.89 | 3200 | 0.1940 | 0.9610 | 0.9610 |
117
+ | 0.0389 | 9.03 | 3250 | 0.1894 | 0.9588 | 0.9588 |
118
+ | 0.0389 | 9.17 | 3300 | 0.1926 | 0.9596 | 0.9596 |
119
+ | 0.0389 | 9.31 | 3350 | 0.1977 | 0.9596 | 0.9596 |
120
+ | 0.0389 | 9.44 | 3400 | 0.1932 | 0.9571 | 0.9571 |
121
+ | 0.0389 | 9.58 | 3450 | 0.1972 | 0.9579 | 0.9580 |
122
+ | 0.0389 | 9.72 | 3500 | 0.1965 | 0.9577 | 0.9577 |
123
+ | 0.0389 | 9.86 | 3550 | 0.1996 | 0.9588 | 0.9588 |
124
+ | 0.0338 | 10.0 | 3600 | 0.2000 | 0.9593 | 0.9594 |
125
 
126
 
127
  ### Framework versions
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d8c22bb2f13f9242f270b2f19e4760773ebc7e5fb0adca604f02df5ce403c3db
3
  size 540023384
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:99a0b3a7ccd8981c9e469bbdf5c47b2186e10cb173aa67875cc5f224133adcb0
3
  size 540023384