Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,220 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: mit
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
tags:
|
| 4 |
+
- sentence-transformers
|
| 5 |
+
- chemistry
|
| 6 |
+
- molecular-similarity
|
| 7 |
+
- cheminformatics
|
| 8 |
+
- unsupervised-learning
|
| 9 |
+
- smiles
|
| 10 |
+
- feature-extraction
|
| 11 |
+
pipeline_tag: sentence-similarity
|
| 12 |
+
library_name: sentence-transformers
|
| 13 |
+
---
|
| 14 |
+
|
| 15 |
+
# miniChembed-prototype
|
| 16 |
+
|
| 17 |
+
This is a **self-supervised molecular embedding** model trained using the **Barlow Twins** objective on approximately **24K unlabeled SMILES strings**. If validated as effective, it will be scaled to 2.1M molecules. The training data were compiled from public sources including:
|
| 18 |
+
|
| 19 |
+
- **ChEMBL34** (Zdrazil et al., 2023)
|
| 20 |
+
- **COCONUTDB** (Sorokina et al., 2021)
|
| 21 |
+
- **SuperNatural3** (Gallo et al., 2023)
|
| 22 |
+
|
| 23 |
+
The model maps SMILES strings to a **320-dimensional dense vector space**, optimized for **molecular similarity search, clustering, and scaffold analysis without any supervision from bioactivity, property labels, or precomputed fingerprints**.
|
| 24 |
+
|
| 25 |
+
Unlike fixed fingerprints (e.g., ECFP4), this model learns representations directly from **stochastic SMILES augmentations**, encouraging invariance to syntactic variation while potentially maximizing representational diversity across molecules.
|
| 26 |
+
The Barlow Twins objective explicitly minimizes redundancy between embedding dimensions, promoting structured, non-collapsed representations.
|
| 27 |
+
|
| 28 |
+
---
|
| 29 |
+
|
| 30 |
+
## Model Details
|
| 31 |
+
|
| 32 |
+
### Architecture & Training
|
| 33 |
+
|
| 34 |
+
| Attribute | Value |
|
| 35 |
+
|----------|-------|
|
| 36 |
+
| **Base architecture** | Custom RoBERTa-style transformer (4 layers, 320 hidden dim, 4 attention heads, ~4M params) |
|
| 37 |
+
| **Initialization** | Random (not pretrained on text or chemistry) |
|
| 38 |
+
| **Training objective** | **Barlow Twins**, redundancy-reduction via cross-correlation matrix |
|
| 39 |
+
| **Augmentation** | Stochastic SMILES enumeration (`MolToSmiles(..., doRandom=True)`) |
|
| 40 |
+
| **Training data** | ~24K unique molecules → augmented into positive pairs |
|
| 41 |
+
| **Sequence length** | 512 tokens |
|
| 42 |
+
| **Embedding dimension** | 320 |
|
| 43 |
+
| **Projection head** | 3-layer MLP with BatchNorm (2048 → 2048 → 2048) |
|
| 44 |
+
| **Pooling** | Mean pooling over token embeddings |
|
| 45 |
+
| **Similarity metric** | Cosine similarity |
|
| 46 |
+
| **Effective batch size** | 64 (physical batch: 16, gradient accumulation: 4×) |
|
| 47 |
+
| **Learning rate** | 1e-4 |
|
| 48 |
+
| **Optimizer** | **Ranger21** (with warmup/warmdown scheduling) |
|
| 49 |
+
| **Weight decay** | 0.01 (applied selectively: no decay on bias/LayerNorm) |
|
| 50 |
+
| **Barlow λ** | 5.0 (stronger off-diagonal penalty) |
|
| 51 |
+
| **Training duration** | 5 epochs |
|
| 52 |
+
| **Hardware** | Single NVIDIA 930MX GPU |
|
| 53 |
+
|
| 54 |
+
### Architecture (SentenceTransformer format)
|
| 55 |
+
```python
|
| 56 |
+
SentenceTransformer(
|
| 57 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'RobertaModel'})
|
| 58 |
+
(1): Pooling({'word_embedding_dimension': 320, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 59 |
+
)
|
| 60 |
+
```
|
| 61 |
+
|
| 62 |
+
> 🔍 **Note**: The model was **not initialized from a language model**—it is trained from scratch on SMILES using only the Barlow Twins objective.
|
| 63 |
+
|
| 64 |
+
---
|
| 65 |
+
|
| 66 |
+
## Usage
|
| 67 |
+
|
| 68 |
+
### Installation
|
| 69 |
+
```bash
|
| 70 |
+
pip install -U sentence-transformers rdkit-pypi
|
| 71 |
+
```
|
| 72 |
+
|
| 73 |
+
### Encoding Molecules
|
| 74 |
+
```python
|
| 75 |
+
from sentence_transformers import SentenceTransformer
|
| 76 |
+
|
| 77 |
+
# Load from Hugging Face Hub
|
| 78 |
+
model = SentenceTransformer("gbyuvd/miniChembed-prototype")
|
| 79 |
+
|
| 80 |
+
# Encode SMILES
|
| 81 |
+
sentences = [
|
| 82 |
+
'O=C1/C=C\\C=C2/N1C[C@@H]3CNC[C@H]2C3', # Cytisine
|
| 83 |
+
"n1c2cc3c(cc2ncc1)[C@@H]4CNC[C@H]3C4", # Varenicline
|
| 84 |
+
"c1ncccc1[C@@H]2CCCN2C", # Nicotine
|
| 85 |
+
'Nc1nc2cncc-2co1', # CID: 162789184
|
| 86 |
+
]
|
| 87 |
+
|
| 88 |
+
embeddings = model.encode(sentences)
|
| 89 |
+
print(embeddings.shape) # (4, 320)
|
| 90 |
+
|
| 91 |
+
# Compute pairwise cosine similarities
|
| 92 |
+
similarities = model.similarity(embeddings, embeddings)
|
| 93 |
+
print(similarities)
|
| 94 |
+
# tensor([[1.0000, 0.4342, 0.5141, 0.2582],
|
| 95 |
+
# [0.4342, 1.0000, 0.8779, 0.8886],
|
| 96 |
+
# [0.5141, 0.8779, 1.0000, 0.9551],
|
| 97 |
+
# [0.2582, 0.8886, 0.9551, 1.0000]])
|
| 98 |
+
```
|
| 99 |
+
|
| 100 |
+
High cosine similarity suggests structural or topological relatedness learned purely from SMILES variation and not from explicit chemical knowledge/labeling.
|
| 101 |
+
|
| 102 |
+
> Tip: For large-scale similarity search, integrate embeddings with Meta's FAISS.
|
| 103 |
+
|
| 104 |
+
---
|
| 105 |
+
|
| 106 |
+
## Comparison to Traditional Fingerprints
|
| 107 |
+
|
| 108 |
+
| Feature | ECFP4 / MACCS | miniChembed-prototype |
|
| 109 |
+
|--------|----------------|------------------------|
|
| 110 |
+
| **Representation** | Hand-crafted binary fingerprint | Learned dense embedding |
|
| 111 |
+
| **Training data** | None (rule-based) | ~24K unlabeled SMILES |
|
| 112 |
+
| **Global semantics** | Captures only local substructures | Learns global invariances via augmentation |
|
| 113 |
+
| **Redundancy control** | Not applicable | Explicitly minimized (Barlow objective) |
|
| 114 |
+
|
| 115 |
+
---
|
| 116 |
+
|
| 117 |
+
## Training Summary
|
| 118 |
+
|
| 119 |
+
- **Objective**: Minimize off-diagonal terms in the cross-correlation matrix of augmented views.
|
| 120 |
+
- **Key metric**: Barlow Health Score = `mean(same-molecule cosine) ��� mean(cross-molecule cosine)`
|
| 121 |
+
→ Higher = better separation between intra- and inter-molecular similarity.
|
| 122 |
+
- **Validation**: Evaluated every 25% of training; best checkpoint selected by health score.
|
| 123 |
+
- **Final health**: , indicating strong disentanglement.
|
| 124 |
+
|
| 125 |
+
---
|
| 126 |
+
|
| 127 |
+
## Limitations
|
| 128 |
+
|
| 129 |
+
- Trained on **drug-like organic molecules**; performance on inorganics, salts, or polymers is unknown.
|
| 130 |
+
- Input must be **valid SMILES**; invalid strings may produce erratic embeddings.
|
| 131 |
+
- **Not trained on bioactivity data**, so similarity indicates structural syntax, not biological function.
|
| 132 |
+
- Small-scale prototype (~24K); final version will scale to 2.1M molecules if proven effective.
|
| 133 |
+
|
| 134 |
+
---
|
| 135 |
+
|
| 136 |
+
## Reproducibility
|
| 137 |
+
|
| 138 |
+
This model was trained using a custom script based on **Sentence Transformers v5.1.0**, with the following environment:
|
| 139 |
+
|
| 140 |
+
- **Python**: 3.13.0
|
| 141 |
+
- **sentence-transformers**: 5.1.0
|
| 142 |
+
- **PyTorch**: 2.6.0
|
| 143 |
+
- **RDKit**: 2023.09.3
|
| 144 |
+
- **Optimizer**: Ranger21 (with epoch-aware warmup/warmdown)
|
| 145 |
+
- **Loss**: Custom `BarlowTwinsLoss` (λ = 5.0)
|
| 146 |
+
- **Augmentation**: RDKit-based stochastic SMILES
|
| 147 |
+
|
| 148 |
+
Training code, config, and evaluation are available on this repo under `train_barlow.py` and `config.yaml`
|
| 149 |
+
|
| 150 |
+
---
|
| 151 |
+
|
| 152 |
+
## Reference:
|
| 153 |
+
Do note that the method used here doesn't use a target network, rather, using RDKit-augmented enumeration of each molecule's SMILES.
|
| 154 |
+
|
| 155 |
+
```
|
| 156 |
+
@misc{çağatan2024unseeunsupervisednoncontrastivesentence,
|
| 157 |
+
title={UNSEE: Unsupervised Non-contrastive Sentence Embeddings},
|
| 158 |
+
author={Ömer Veysel Çağatan},
|
| 159 |
+
year={2024},
|
| 160 |
+
eprint={2401.15316},
|
| 161 |
+
archivePrefix={arXiv},
|
| 162 |
+
primaryClass={cs.CL},
|
| 163 |
+
url={https://arxiv.org/abs/2401.15316},
|
| 164 |
+
}
|
| 165 |
+
```
|
| 166 |
+
---
|
| 167 |
+
|
| 168 |
+
## Citation
|
| 169 |
+
|
| 170 |
+
If you use this model, please cite:
|
| 171 |
+
|
| 172 |
+
```bibtex
|
| 173 |
+
@inproceedings{reimers-2019-sentence-bert,
|
| 174 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
| 175 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
| 176 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
| 177 |
+
year = "2019",
|
| 178 |
+
url = "https://arxiv.org/abs/1908.10084"
|
| 179 |
+
}
|
| 180 |
+
|
| 181 |
+
@article{sorokina2021coconut,
|
| 182 |
+
title={COCONUT online: Collection of Open Natural Products database},
|
| 183 |
+
author={Sorokina, Maria and Merseburger, Peter and Rajan, Kohulan and Yirik, Mehmet Aziz and Steinbeck, Christoph},
|
| 184 |
+
journal={Journal of Cheminformatics},
|
| 185 |
+
volume={13},
|
| 186 |
+
number={1},
|
| 187 |
+
pages={2},
|
| 188 |
+
year={2021},
|
| 189 |
+
doi={10.1186/s13321-020-00478-9}
|
| 190 |
+
}
|
| 191 |
+
|
| 192 |
+
@article{zdrazil2023chembl,
|
| 193 |
+
title={The ChEMBL Database in 2023: a drug discovery platform spanning multiple bioactivity data types and time periods},
|
| 194 |
+
author={Zdrazil, Barbara and Felix, Eloy and Hunter, Fiona and Manners, Emma J and Blackshaw, James and Corbett, Sybilla and de Veij, Marleen and Ioannidis, Harris and Lopez, David Mendez and Mosquera, Juan F and Magarinos, Maria Paula and Bosc, Nicolas and Arcila, Ricardo and Kizil{\"o}ren, Tevfik and Gaulton, Anna and Bento, A Patr{\'i}cia and Adasme, Melissa F and Monecke, Peter and Landrum, Gregory A and Leach, Andrew R},
|
| 195 |
+
journal={Nucleic Acids Research},
|
| 196 |
+
year={2023},
|
| 197 |
+
volume={gkad1004},
|
| 198 |
+
doi={10.1093/nar/gkad1004}
|
| 199 |
+
}
|
| 200 |
+
|
| 201 |
+
@misc{chembl34,
|
| 202 |
+
title={ChemBL34},
|
| 203 |
+
year={2023},
|
| 204 |
+
doi={10.6019/CHEMBL.database.34}
|
| 205 |
+
}
|
| 206 |
+
|
| 207 |
+
@article{Gallo2023,
|
| 208 |
+
author = {Gallo, K and Kemmler, E and Goede, A and Becker, F and Dunkel, M and Preissner, R and Banerjee, P},
|
| 209 |
+
title = {{SuperNatural 3.0-a database of natural products and natural product-based derivatives}},
|
| 210 |
+
journal = {Nucleic Acids Research},
|
| 211 |
+
year = {2023},
|
| 212 |
+
month = jan,
|
| 213 |
+
day = {6},
|
| 214 |
+
volume = {51},
|
| 215 |
+
number = {D1},
|
| 216 |
+
pages = {D654-D659},
|
| 217 |
+
doi = {10.1093/nar/gkac1008}
|
| 218 |
+
}
|
| 219 |
+
|
| 220 |
+
```
|