gayanin commited on
Commit
a9b9e2a
·
1 Parent(s): b079e5b

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +69 -0
README.md ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ model-index:
6
+ - name: t5-small-paraphrasing-mlm
7
+ results: []
8
+ ---
9
+
10
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
+ should probably proofread and complete it, then remove this comment. -->
12
+
13
+ # t5-small-paraphrasing-mlm
14
+
15
+ This model is a fine-tuned version of [gayanin/t5-small-paraphrase-pubmed](https://huggingface.co/gayanin/t5-small-paraphrase-pubmed) on an unknown dataset.
16
+ It achieves the following results on the evaluation set:
17
+ - Loss: 0.7030
18
+ - Rouge2 Precision: 0.6576
19
+ - Rouge2 Recall: 0.4712
20
+ - Rouge2 Fmeasure: 0.532
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 2e-05
40
+ - train_batch_size: 8
41
+ - eval_batch_size: 8
42
+ - seed: 42
43
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
+ - lr_scheduler_type: linear
45
+ - num_epochs: 10
46
+ - mixed_precision_training: Native AMP
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure |
51
+ |:-------------:|:-----:|:------:|:---------------:|:----------------:|:-------------:|:---------------:|
52
+ | 0.9215 | 1.0 | 13833 | 0.8050 | 0.6352 | 0.454 | 0.5131 |
53
+ | 0.855 | 2.0 | 27666 | 0.7679 | 0.6411 | 0.4589 | 0.5184 |
54
+ | 0.8387 | 3.0 | 41499 | 0.7464 | 0.6464 | 0.4626 | 0.5226 |
55
+ | 0.8267 | 4.0 | 55332 | 0.7315 | 0.6513 | 0.4671 | 0.5273 |
56
+ | 0.7879 | 5.0 | 69165 | 0.7217 | 0.6534 | 0.4687 | 0.529 |
57
+ | 0.7738 | 6.0 | 82998 | 0.7142 | 0.6548 | 0.4688 | 0.5295 |
58
+ | 0.7793 | 7.0 | 96831 | 0.7094 | 0.6553 | 0.4694 | 0.53 |
59
+ | 0.7654 | 8.0 | 110664 | 0.7056 | 0.6573 | 0.4704 | 0.5313 |
60
+ | 0.7675 | 9.0 | 124497 | 0.7036 | 0.6577 | 0.4712 | 0.532 |
61
+ | 0.7662 | 10.0 | 138330 | 0.7030 | 0.6576 | 0.4712 | 0.532 |
62
+
63
+
64
+ ### Framework versions
65
+
66
+ - Transformers 4.17.0
67
+ - Pytorch 1.10.0+cu111
68
+ - Datasets 1.18.4
69
+ - Tokenizers 0.11.6