update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
model-index:
|
6 |
+
- name: t5-small-paraphrasing-mlm
|
7 |
+
results: []
|
8 |
+
---
|
9 |
+
|
10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
+
should probably proofread and complete it, then remove this comment. -->
|
12 |
+
|
13 |
+
# t5-small-paraphrasing-mlm
|
14 |
+
|
15 |
+
This model is a fine-tuned version of [gayanin/t5-small-paraphrase-pubmed](https://huggingface.co/gayanin/t5-small-paraphrase-pubmed) on an unknown dataset.
|
16 |
+
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 0.7030
|
18 |
+
- Rouge2 Precision: 0.6576
|
19 |
+
- Rouge2 Recall: 0.4712
|
20 |
+
- Rouge2 Fmeasure: 0.532
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 2e-05
|
40 |
+
- train_batch_size: 8
|
41 |
+
- eval_batch_size: 8
|
42 |
+
- seed: 42
|
43 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
+
- lr_scheduler_type: linear
|
45 |
+
- num_epochs: 10
|
46 |
+
- mixed_precision_training: Native AMP
|
47 |
+
|
48 |
+
### Training results
|
49 |
+
|
50 |
+
| Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure |
|
51 |
+
|:-------------:|:-----:|:------:|:---------------:|:----------------:|:-------------:|:---------------:|
|
52 |
+
| 0.9215 | 1.0 | 13833 | 0.8050 | 0.6352 | 0.454 | 0.5131 |
|
53 |
+
| 0.855 | 2.0 | 27666 | 0.7679 | 0.6411 | 0.4589 | 0.5184 |
|
54 |
+
| 0.8387 | 3.0 | 41499 | 0.7464 | 0.6464 | 0.4626 | 0.5226 |
|
55 |
+
| 0.8267 | 4.0 | 55332 | 0.7315 | 0.6513 | 0.4671 | 0.5273 |
|
56 |
+
| 0.7879 | 5.0 | 69165 | 0.7217 | 0.6534 | 0.4687 | 0.529 |
|
57 |
+
| 0.7738 | 6.0 | 82998 | 0.7142 | 0.6548 | 0.4688 | 0.5295 |
|
58 |
+
| 0.7793 | 7.0 | 96831 | 0.7094 | 0.6553 | 0.4694 | 0.53 |
|
59 |
+
| 0.7654 | 8.0 | 110664 | 0.7056 | 0.6573 | 0.4704 | 0.5313 |
|
60 |
+
| 0.7675 | 9.0 | 124497 | 0.7036 | 0.6577 | 0.4712 | 0.532 |
|
61 |
+
| 0.7662 | 10.0 | 138330 | 0.7030 | 0.6576 | 0.4712 | 0.532 |
|
62 |
+
|
63 |
+
|
64 |
+
### Framework versions
|
65 |
+
|
66 |
+
- Transformers 4.17.0
|
67 |
+
- Pytorch 1.10.0+cu111
|
68 |
+
- Datasets 1.18.4
|
69 |
+
- Tokenizers 0.11.6
|