End of training
Browse files
README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
---
|
2 |
-
license:
|
3 |
-
base_model:
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
datasets:
|
@@ -22,7 +22,7 @@ model-index:
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
-
value: 0.
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -30,10 +30,10 @@ should probably proofread and complete it, then remove this comment. -->
|
|
30 |
|
31 |
# deberta_finetuned_yahoo_answers_topics
|
32 |
|
33 |
-
This model is a fine-tuned version of [
|
34 |
It achieves the following results on the evaluation set:
|
35 |
-
- Loss: 0.
|
36 |
-
- Accuracy: 0.
|
37 |
|
38 |
## Model description
|
39 |
|
@@ -64,17 +64,17 @@ The following hyperparameters were used during training:
|
|
64 |
|
65 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
66 |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
|
67 |
-
| 1.
|
68 |
-
| 1.
|
69 |
-
| 0.
|
70 |
-
|
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
|
74 |
|
75 |
### Framework versions
|
76 |
|
77 |
- Transformers 4.34.1
|
78 |
-
- Pytorch 2.
|
79 |
-
- Datasets 2.14.
|
80 |
- Tokenizers 0.14.1
|
|
|
1 |
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: distilbert-base-uncased
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
datasets:
|
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
+
value: 0.71195
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
30 |
|
31 |
# deberta_finetuned_yahoo_answers_topics
|
32 |
|
33 |
+
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the yahoo_answers_topics dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.9096
|
36 |
+
- Accuracy: 0.7119
|
37 |
|
38 |
## Model description
|
39 |
|
|
|
64 |
|
65 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
66 |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
|
67 |
+
| 1.1025 | 0.03 | 5000 | 1.0702 | 0.6717 |
|
68 |
+
| 1.0132 | 0.06 | 10000 | 0.9976 | 0.6834 |
|
69 |
+
| 0.8688 | 0.09 | 15000 | 0.9770 | 0.6961 |
|
70 |
+
| 0.9964 | 0.11 | 20000 | 0.9356 | 0.7020 |
|
71 |
+
| 0.9338 | 0.14 | 25000 | 0.9259 | 0.7090 |
|
72 |
+
| 0.9059 | 0.17 | 30000 | 0.9096 | 0.7119 |
|
73 |
|
74 |
|
75 |
### Framework versions
|
76 |
|
77 |
- Transformers 4.34.1
|
78 |
+
- Pytorch 2.1.0+cu118
|
79 |
+
- Datasets 2.14.6
|
80 |
- Tokenizers 0.14.1
|